Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярные координаты в пространстве





В этой системе основными постоянными элементами являются точка 0 (полюс), ось Oz (полярная ось) и полуплоскость Ozx, примы­кающая к полярной оси Oz (полярная полу­плоскость).

Пусть М — какая-либо точка прост­ранства (рис.). Обозначим через длину радиуса-вектора ОМ, через — угол, составляемый ОМ с полярною осью Oz, и наконец, через — угол, составляемый полуплоскостью, примыкающей к оси Oz и, проходящей через точку М, с полярною полуплоскостью Oxz. Угол отсчитывается от полуплоскости Oxz в каком-либо определенном направлении, например по на­правлению движения часовой стрелки (для наблюдателя, стоя­щего вдоль Oz).

 

Ясно, что достаточно изменять в пределах (0, ), — в пре­делах (0, л) и — в пределах (0, 2л), чтобы получить все точки пространства.

Величины , и называются по­лярными (или сферическими) координа­тами точки М.

Найдем теперь формулы перехода от полярных координат к декартовым пря­моугольным.

Мы предполагаем (рис), что ось Oz совпадает с полярною осью. Ох расположена в полярной полуплоскости, а Оу перпендикулярна к обеим предыдущим осям и притом проведена в такую сторону, чтобы угол для полуплоскости Oyz был равен . Имеем, очевидно,

z = пр ОМ = cos .

Проектируя, далее, вектор ОМ на плоскость Оху, мы получим вектор (черт. 63) длины r

= = cos ( - ) = sin ,

который составляет с осью Ох угол . Если спроектировать этот вектор на Ох и Оу, то получим

х = | Оm | cos = sin cos ,

у = | Оm | sin = sin sin .

Итак,

х = sin cos , у = sin sin , z = cos . (1)

Обратно, зная х, у, z, можем определить , и .







Дата добавления: 2015-06-15; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия