Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярные координаты в пространстве





В этой системе основными постоянными элементами являются точка 0 (полюс), ось Oz (полярная ось) и полуплоскость Ozx, примы­кающая к полярной оси Oz (полярная полу­плоскость).

Пусть М — какая-либо точка прост­ранства (рис.). Обозначим через длину радиуса-вектора ОМ, через — угол, составляемый ОМ с полярною осью Oz, и наконец, через — угол, составляемый полуплоскостью, примыкающей к оси Oz и, проходящей через точку М, с полярною полуплоскостью Oxz. Угол отсчитывается от полуплоскости Oxz в каком-либо определенном направлении, например по на­правлению движения часовой стрелки (для наблюдателя, стоя­щего вдоль Oz).

 

Ясно, что достаточно изменять в пределах (0, ), — в пре­делах (0, л) и — в пределах (0, 2л), чтобы получить все точки пространства.

Величины , и называются по­лярными (или сферическими) координа­тами точки М.

Найдем теперь формулы перехода от полярных координат к декартовым пря­моугольным.

Мы предполагаем (рис), что ось Oz совпадает с полярною осью. Ох расположена в полярной полуплоскости, а Оу перпендикулярна к обеим предыдущим осям и притом проведена в такую сторону, чтобы угол для полуплоскости Oyz был равен . Имеем, очевидно,

z = пр ОМ = cos .

Проектируя, далее, вектор ОМ на плоскость Оху, мы получим вектор (черт. 63) длины r

= = cos ( - ) = sin ,

который составляет с осью Ох угол . Если спроектировать этот вектор на Ох и Оу, то получим

х = | Оm | cos = sin cos ,

у = | Оm | sin = sin sin .

Итак,

х = sin cos , у = sin sin , z = cos . (1)

Обратно, зная х, у, z, можем определить , и .







Дата добавления: 2015-06-15; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия