Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярные координаты в пространстве





В этой системе основными постоянными элементами являются точка 0 (полюс), ось Oz (полярная ось) и полуплоскость Ozx, примы­кающая к полярной оси Oz (полярная полу­плоскость).

Пусть М — какая-либо точка прост­ранства (рис.). Обозначим через длину радиуса-вектора ОМ, через — угол, составляемый ОМ с полярною осью Oz, и наконец, через — угол, составляемый полуплоскостью, примыкающей к оси Oz и, проходящей через точку М, с полярною полуплоскостью Oxz. Угол отсчитывается от полуплоскости Oxz в каком-либо определенном направлении, например по на­правлению движения часовой стрелки (для наблюдателя, стоя­щего вдоль Oz).

 

Ясно, что достаточно изменять в пределах (0, ), — в пре­делах (0, л) и — в пределах (0, 2л), чтобы получить все точки пространства.

Величины , и называются по­лярными (или сферическими) координа­тами точки М.

Найдем теперь формулы перехода от полярных координат к декартовым пря­моугольным.

Мы предполагаем (рис), что ось Oz совпадает с полярною осью. Ох расположена в полярной полуплоскости, а Оу перпендикулярна к обеим предыдущим осям и притом проведена в такую сторону, чтобы угол для полуплоскости Oyz был равен . Имеем, очевидно,

z = пр ОМ = cos .

Проектируя, далее, вектор ОМ на плоскость Оху, мы получим вектор (черт. 63) длины r

= = cos ( - ) = sin ,

который составляет с осью Ох угол . Если спроектировать этот вектор на Ох и Оу, то получим

х = | Оm | cos = sin cos ,

у = | Оm | sin = sin sin .

Итак,

х = sin cos , у = sin sin , z = cos . (1)

Обратно, зная х, у, z, можем определить , и .







Дата добавления: 2015-06-15; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия