Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярные координаты в пространстве





В этой системе основными постоянными элементами являются точка 0 (полюс), ось Oz (полярная ось) и полуплоскость Ozx, примы­кающая к полярной оси Oz (полярная полу­плоскость).

Пусть М — какая-либо точка прост­ранства (рис.). Обозначим через длину радиуса-вектора ОМ, через — угол, составляемый ОМ с полярною осью Oz, и наконец, через — угол, составляемый полуплоскостью, примыкающей к оси Oz и, проходящей через точку М, с полярною полуплоскостью Oxz. Угол отсчитывается от полуплоскости Oxz в каком-либо определенном направлении, например по на­правлению движения часовой стрелки (для наблюдателя, стоя­щего вдоль Oz).

 

Ясно, что достаточно изменять в пределах (0, ), — в пре­делах (0, л) и — в пределах (0, 2л), чтобы получить все точки пространства.

Величины , и называются по­лярными (или сферическими) координа­тами точки М.

Найдем теперь формулы перехода от полярных координат к декартовым пря­моугольным.

Мы предполагаем (рис), что ось Oz совпадает с полярною осью. Ох расположена в полярной полуплоскости, а Оу перпендикулярна к обеим предыдущим осям и притом проведена в такую сторону, чтобы угол для полуплоскости Oyz был равен . Имеем, очевидно,

z = пр ОМ = cos .

Проектируя, далее, вектор ОМ на плоскость Оху, мы получим вектор (черт. 63) длины r

= = cos ( - ) = sin ,

который составляет с осью Ох угол . Если спроектировать этот вектор на Ох и Оу, то получим

х = | Оm | cos = sin cos ,

у = | Оm | sin = sin sin .

Итак,

х = sin cos , у = sin sin , z = cos . (1)

Обратно, зная х, у, z, можем определить , и .







Дата добавления: 2015-06-15; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия