Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Фокусы, эксцентриситет, директрисы и фокальный параметр эллипса





1. Фокусы и эксцентриситет эллипса. Сделаем из конца малой полуоси эллипса засечки радиусом, равным длине с большой полуоси (рис.); они пересекут большую ось в точках F и F находящихся по обе стороны от центра эллипса О на расстоянии с = . Эти точки называются фокусами эллипса. Длина с называется линейным эксцентриситетом эллипса, а отношение —численным эксцентриситетом или просто эксцентриситетом эллипса. Так как а — гипотенуза, а с — катет прямоугольного треугольника OBF , то с < а; следовательно, если b < а т. е. если эллипс не окружность, то 0 < < 1.

Если эллипс рассматривать, как получаемый сжатием окружности радиуса а к ее диаметру АС с коэффициентом сжатия k = , то при k = 1 мы имеем окружность, и а = b, с = 0, = 0; следовательно, фокусы F и F совпадают и лежат в центре этой окружности. Вооб­ще, так как b = ak, то c = a , следова­тельно, с тем больше, чем k меньше, т. е. чем эллипс более сжат. При сжатии эллипса к его большой оси АС фокусы симметрично расходятся от центра по большой оси и стремятся к ее концам A, С. Число k непремен­но больше нуля, хотя и может быть сколь угодно малым; иными словами, эллипс может сколь угодно приближаться к отрезку АС, но сам этот отрезок — уже не эллипс.

2. Директрисы эллипса. Прямые, проходящие параллельно малой оси эллипса по ту и другую ее стороны на расстояниях от центра, называются директрисами эллипса (см. рис). При k = 1, т. е. когда эллипс — окружность, = c = 0, и директрис нет. Если же k весьма близко к 1, т. е. эллипс мало отличается от окружности, то директрисы очень далеки; при неограниченном при­ближении k к единице директрисы неограниченно удаляются. При уменьшении k директрисы сближаются, и когда k весьма близко к нулю, т. е. весьма близко к 1, расстояние от директрис до центра эллипса весьма мало превышает длину а его большой полуоси.

3. Фокальный параметр эллипса. Фокальным параметром эллипса называется длина отрезка перпендикуляра к большой оси, восставленного в фокусе до пересечения с эллипсом. Его обозначают буквой р. Очевидно, р равно ординате точки эллипса, лежащей над фокусом. Абсцисса этой точки равна с.

 

Замечание. Сравнение директориальных свойств эллипса, гиперболы и параболы показывает, что все эти линии суть геометрические места точек, отношение расстояний от которых до заданной точки и заданной прямой, не проходящей через эту точку, постоянно. Если это отношение меньше единицы, то получается эллипс, если оно больше единицы —получается гипербола; в обоих случаях это отношение равно эксцентриситету. Случаю же, когда отношение равно единице, соответствует парабола. Поэтому мы будем считать, по определению, что для параболы эксцентриситет е равен 1. Таким образом, парабола находится как бы на границе между эллипсами и гиперболами: непрерывно изменяя отношение расстояний до фокуса и директрисы от значений, меньших единицы, до значений, больших единицы, мы перейдем от эллипсов через параболу к гиперболам (рис).

 







Дата добавления: 2015-06-15; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия