Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Министерство образования Республики Беларусь





.

 

Решение. Для нахождения обратного оператора рассмотрим в уравнение , т. е. линейное дифференциальное уравнение

. (7)

Нужно выяснить, при каких значениях у этого уравнения для любого существует единственное решение . Другими словами, для любого краевая задача

(8)

для уравнения (7) должна иметь единственное непрерывно дифференцируемое решение. Воспользовавшись формулой для общего решения линейного дифференциального уравнения первого порядка, получим общее решение уравнения (7):

. (9)

Требуется узнать, при каких для любого найдется такое С, при котором формула (9) дает решение задачи (8). Подставив (9) в (8), получим после упрощений

. (10)

Возможны два случая.

а) . Тогда уравнение (11) имеет единственное решение

для любого . Следовательно, при этих существует обратный оператор, который мы найдем, подставив это значение С в равенство (9):

.

В силу теоремы Банаха об обратном операторе непрерывность этого оператора будет следовать из непрерывности оператора . Последний же факт легко доказать по Гейне. Действительно, если в пространстве , то это значит, что и равномерно на . Но тогда и равномерно на ;

б) . В этом случае уравнение (10) имеет вид

.

Но правая часть этого уравнения при некоторых непрерывных у (например, при ) не будет равна 0. Следовательно, при этих у последнее уравнение не имеет решения (относительно С), а потому оператор не является сюръективным.

Итак, обратный к оператору существует тогда и только тогда, когда . Причем при таких значениях оператор непрерывно обратим.

 

Министерство образования Республики Беларусь







Дата добавления: 2015-08-30; просмотров: 928. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия