Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Министерство образования Республики Беларусь





.

 

Решение. Для нахождения обратного оператора рассмотрим в уравнение , т. е. линейное дифференциальное уравнение

. (7)

Нужно выяснить, при каких значениях у этого уравнения для любого существует единственное решение . Другими словами, для любого краевая задача

(8)

для уравнения (7) должна иметь единственное непрерывно дифференцируемое решение. Воспользовавшись формулой для общего решения линейного дифференциального уравнения первого порядка, получим общее решение уравнения (7):

. (9)

Требуется узнать, при каких для любого найдется такое С, при котором формула (9) дает решение задачи (8). Подставив (9) в (8), получим после упрощений

. (10)

Возможны два случая.

а) . Тогда уравнение (11) имеет единственное решение

для любого . Следовательно, при этих существует обратный оператор, который мы найдем, подставив это значение С в равенство (9):

.

В силу теоремы Банаха об обратном операторе непрерывность этого оператора будет следовать из непрерывности оператора . Последний же факт легко доказать по Гейне. Действительно, если в пространстве , то это значит, что и равномерно на . Но тогда и равномерно на ;

б) . В этом случае уравнение (10) имеет вид

.

Но правая часть этого уравнения при некоторых непрерывных у (например, при ) не будет равна 0. Следовательно, при этих у последнее уравнение не имеет решения (относительно С), а потому оператор не является сюръективным.

Итак, обратный к оператору существует тогда и только тогда, когда . Причем при таких значениях оператор непрерывно обратим.

 

Министерство образования Республики Беларусь







Дата добавления: 2015-08-30; просмотров: 928. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2026 год . (0.015 сек.) русская версия | украинская версия