Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 5.3





Интегральные уравнения

 

В пространстве рассмотрим уравнени е

, (Ф)

где , (уравнение Фредгольма 2 рода).

Наряду с уравнением (Ф) рассмотрим соответствующие ему однородное и сопряженное однородное уравнения:

; (Ф0)

*0)

Следующие результаты, связывающие между собой решения этих уравнений, носят название теорем Фредгольма.

Теорема 1. Однородныеуравнения0) и*0) имеют одно и то же, причем конечное, число линейно независимых решений.

Теорема 2. Уравнение (Ф) разрешимо для любого f тогда и только тогда, когда уравнение0) имеет только нулевое решение.

Теорема 3. Уравнение (Ф) разрешимо для тех и только тех f, для которых равенство

выполняется для любого решения уравнения*0).

Теорема 4. Если функции k и f непрерывны, то теоремы Фредгольма справедливы и в пространстве C [ a,b ].

Будем далее рассматривать интегральное уравнение

(1)

5.3.1. Решить уравнение (1) при , если (таблица 5.3.1):

 

Таблица 5.3.1

 

Вариант
   
   
   
   
     
       
   
     
       
   

 

5.3.2. Не решая уравнения (1), определите, при каких оно имеет решение в пространстве (в этой задаче мы полагаем ) (таблица 5.3.2).

 

Таблица 5.3.2

 

Вариант a b
   
   
     
   
   
 
   
  -1  
   
   

 

5.3.3. Определить, при каких значениях параметра уравнение (1) разрешимо в пространстве при любой функции из (таблица 5.3.3).

 

Таблица 5.3.3

 

Вариант a b
   
   
   
   
   
   
     
   
  -3  
   






Дата добавления: 2015-08-30; просмотров: 900. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия