Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. Решение. Нам нужно решить уравнение





1. Решить уравнение (1) при .

Пример 1. .

Решение. Нам нужно решить уравнение

,

то есть

. (2)

Введем обозначения:

(3)

Тогда из (2) заключаем, что решение данного уравнения имеет вид

(4)

с неопределенными коэффициентами a и b. Для нахождения a и b подставим выражение (4) в систему (3):

или после вычисления интегралов в правых частях:

Отсюда . Подставляя эти значения в (4), окончательно получаем .

2. Не решая уравнения (1), определите, при каких оно имеет решение в пространстве (здесь мы полагаем ).

Пример 1. .

Решение. Рассматривается уравнение

. (5)

В соответствии с теоремой Фредгольма, данное уравнение разрешимо для тех и только тех , которые ортогональны любому решению сопряженного однородного уравнения.

Составим сопряженное однородное уравнение:

или

.

Введем обозначения

(6)

Тогда решение сопряженного однородного уравнения принимает вид

. (7)

Подставив (7) в (6), получим систему уравнений

или после вычисления интегралов,

Отсюда , а − произвольная постоянная. Следовательно, решение сопряженного однородного уравнения есть

,

где С − произвольная постоянная. Значит, данное уравнение разрешимо для тех и только тех , для которых

.

3. При каких значениях параметра уравнение (1) разрешимо в пространстве при любой функции из ?

Пример 1. .

Решение. Рассматрим уравнение

.

В соответствии с теоремой Фредгольма данное уравнение разрешимо при любой функции тогда и только тогда, когда соответствующее однородное уравнение имеет только нулевое решение.

Решим соответствующее однородное уравнение

,

или

Введем обозначения

(8)

Тогда

. (9)

Подставив (9) в (8), получим

После вычисления интегралов получаем систему

или

Последняя система (а вместе с ней и соответствующее однородное уравнение) имеет только нулевое решение, если и только если и . Значит, данное уравнение разрешимо в пространстве при любой функции тогда и только тогда, когда .








Дата добавления: 2015-08-30; просмотров: 874. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия