Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. Решение. Нам нужно решить уравнение





1. Решить уравнение (1) при .

Пример 1. .

Решение. Нам нужно решить уравнение

,

то есть

. (2)

Введем обозначения:

(3)

Тогда из (2) заключаем, что решение данного уравнения имеет вид

(4)

с неопределенными коэффициентами a и b. Для нахождения a и b подставим выражение (4) в систему (3):

или после вычисления интегралов в правых частях:

Отсюда . Подставляя эти значения в (4), окончательно получаем .

2. Не решая уравнения (1), определите, при каких оно имеет решение в пространстве (здесь мы полагаем ).

Пример 1. .

Решение. Рассматривается уравнение

. (5)

В соответствии с теоремой Фредгольма, данное уравнение разрешимо для тех и только тех , которые ортогональны любому решению сопряженного однородного уравнения.

Составим сопряженное однородное уравнение:

или

.

Введем обозначения

(6)

Тогда решение сопряженного однородного уравнения принимает вид

. (7)

Подставив (7) в (6), получим систему уравнений

или после вычисления интегралов,

Отсюда , а − произвольная постоянная. Следовательно, решение сопряженного однородного уравнения есть

,

где С − произвольная постоянная. Значит, данное уравнение разрешимо для тех и только тех , для которых

.

3. При каких значениях параметра уравнение (1) разрешимо в пространстве при любой функции из ?

Пример 1. .

Решение. Рассматрим уравнение

.

В соответствии с теоремой Фредгольма данное уравнение разрешимо при любой функции тогда и только тогда, когда соответствующее однородное уравнение имеет только нулевое решение.

Решим соответствующее однородное уравнение

,

или

Введем обозначения

(8)

Тогда

. (9)

Подставив (9) в (8), получим

После вычисления интегралов получаем систему

или

Последняя система (а вместе с ней и соответствующее однородное уравнение) имеет только нулевое решение, если и только если и . Значит, данное уравнение разрешимо в пространстве при любой функции тогда и только тогда, когда .








Дата добавления: 2015-08-30; просмотров: 874. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия