Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1.Выяснить, являются ли следующие операторы компактными в пространстве .





1. Выяснить, являются ли следующие операторы компактными в пространстве .

 

Пример 1. .

 

Решение. Докажем, что данный оператор не является компактным. Возьмем множество . Оно ограничено в . В то же время множество не является предкомпактным в , так как не удовлетворяет свойству Больцано-Вейерштрасса. В самом деле, из последовательности нельзя извлечь сходящуюся в подпоследовательность в силу того, что любая ее подпоследовательность будет иметь разрывный предел (какой?), а предел равномерно сходящейся последовательности непрерывных функций должен быть непрерывен. В соответствии с определением компактного оператора данный оператор не компактен.

 

Пример 2. .

 

Решение. Представим данный оператор в виде , где

, ,

и докажем, что операторы и компактны. Оператор компактен как интегральный оператор Фредгольма с непрерывным ядром.Компактность оператора следует из того, что он является ограниченным оператором конечного ранга. Действительно, он ограничен, так как

,

а с другой стороны образ оператора А есть

,

а потому

,

поскольку все функции линейно выражаются через функцию . Следовательно, оператор компактен как сумма компактных операторов.

 

2. Выяснить, является ли оператор компактным.

 

Пример 1. .

 

Решение. Докажем, что оператор является компактным. Рассмотрим следующую последовательность линейных операторов конечного ранга:

(образ оператора содержится в n -мерном подпространстве пространства l 1 , состоящем из векторов вида ).

Эти операторы ограничены. Действительно,

Следовательно, они компактны. Теперь компактность оператора А следует из того, что последовательность сходится к А по норме, так как

,

а потому

,

поскольку остаток сходящегося ряда стремиться к нулю.

3. Выяснить, является ли оператор компактным.

 

Пример 1. , .

 

Решение. Возьмем в произвольное ограниченное множество М. Его ограниченность означает, что

.

Отсюда следует, что

, .

Рассмотрим теперь множество . Оно равномерно ограничено, так как . Кроме того, равностепенно непрерывно, так как по теореме Лагранжа

.

В силу теоремы Арцела-Асколи множество предкомпактно. Значит, оператор А компактен.

 

Пример 2. , .

Решение. Возьмем ограниченное в множество

(проверьте ограниченность множества М). Множество не является предкомпактным в пространстве , так как не содержит сходящихся в подпоследовательностей (т. е. не удовлетворяет свойству Больцано-Вейерштрасса). В самом деле, из сходимости последовательности в следует равномерная сходимость последовательности ее производных (проверьте это). А с другой стороны, из последовательности нельзя извлечь равномерно сходящуюся подпоследовательность (почему?). Значит, данный оператор не компактен.








Дата добавления: 2015-08-30; просмотров: 2274. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия