Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные ограниченные функционалы





Линейные ограниченные функционалы и операторы в нормированных пространствах

 

Определение. Пусть – нормированное пространство над полем (). Ограниченный линейный оператор называется ограниченным (непрерывным) линейным функционалом.

Пространство ограниченных линейных функционалов на Х обозначается (или ) и называется сопряженным к Х.

Ниже для числа через q будет обозначаться такое число, что (при считается, что ).

Теорема (об общем виде линейного ограниченного функционала в ). Пусть – пространство с -конечной мерой, . Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Примечание. Пространство состоит из существенно ограниченных функций (функция называется существенно ограниченной на отрезке , если почти всюду на ). Норма в пространстве задается следующим образом:

{ п.в. на }.

Следствие (об общем виде линейного ограниченного функционала в ). Пусть . Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Теорема (об общем виде линейного ограниченного функционала в пространстве ). Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Ниже через обозначается пространство функций ограниченной вариации на , - вариация функции .

Теорема (об общем виде линейного ограниченного функционала в ). Для любого ограниченного линейного функционала f на существует единственная непрерывная слева функция , такая, что F (a) =0 и

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

 

4.1.1. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.1).

 

Таблица 4.1.1

 

Вариант
1 2
 
 
 
 

Окончание таблицы 4.1.1

 

1 2
 
 
 
 
 
 

4.1.2. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.2).

 

Таблица 4.1.2

 

Вариант
1 2 3
   
   
   
  7/4

 

Окончание таблицы 4.1.2

 

1 2 3
   
  5/4
   
   
   
   

4.1.3. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.3).

 

Таблица 4.1.3

 

Вариант p a b
1 2 3 4 5
  9/2 - 1  
       
       
  6/5 - 1  

 

Окончание таблицы 4.1.3

 

1 2 3 4 5
       
    - 1  
    -1  
       
  9/5 -1  
  5/4    

 

4.1.4. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.4).

 

Таблица 4.1.4

 

Вариант a b
1 2 3 4
     
  - 1  
     

 

Окончание таблицы 4.1.4

 

1 2 3 4
  - 3  
  - 2  
  -2  
  -1  
  -2  
  -4  
     

 

4.1.5. Пусть Х – банахово пространство над полем К. Задает ли данная формула линейный ограниченный функционал ? В случае положительного ответа найти его норму (таблица 4.1.5).

 

Таблица 4.1.5

 

Вариант
1 2 3 4
  с
 

Окончание таблицы 4.1.5

 

1 2 3 4  
  с  
  с
 
 
 
 
 
 

 

 







Дата добавления: 2015-08-30; просмотров: 2311. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия