Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные ограниченные функционалы




Определение. Пусть – нормированное пространство над полем ( ). Ограниченный линейный оператор называется ограниченным (непрерывным) линейным функционалом.

Пространство ограниченных линейных функционалов на Х обозначается (или ) и называется сопряженным к Х.

Ниже для числа через q будет обозначаться такое число, что (при считается, что ).

Теорема(об общем виде линейного ограниченного функционала в ). Пусть – пространство с -конечной мерой, . Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Примечание.Пространство состоит из существенно ограниченных функций (функция называется существенно ограниченной на отрезке , если почти всюду на ). Норма в пространстве задается следующим образом:

{ п.в. на }.

Следствие(об общем виде линейного ограниченного функционала в ). Пусть . Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Теорема(об общем виде линейного ограниченного функционала в пространстве ). Для любого ограниченного линейного функционала f на существует такое единственное , что

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

Ниже через обозначается пространство функций ограниченной вариации на , - вариация функции .

Теорема(об общем виде линейного ограниченного функционала в ). Для любого ограниченного линейного функционала f на существует единственная непрерывная слева функция , такая, что F(a)=0 и

,

и обратно, любой функционал такого вида линеен и ограничен на . При этом .

 

4.1.1.Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.1).

 

Таблица 4.1.1

 

Вариант
1 2

Окончание таблицы 4.1.1

 

1 2

4.1.2.Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.2).

 

Таблица 4.1.2

 

Вариант
1 2 3
7/4

 

Окончание таблицы 4.1.2

 

1 2 3
5/4

4.1.3. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.3).

 

Таблица 4.1.3

 

Вариант p a b
1 2 3 4 5
9/2 -1
6/5 -1

 

Окончание таблицы 4.1.3

 

1 2 3 4 5
-1
-1
9/5 -1
5/4

 

4.1.4. Используя теорему об общем виде линейного ограниченного функционала в пространстве , выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму (таблица 4.1.4).

 

Таблица 4.1.4

 

Вариант a b
1 2 3 4
-1

 

Окончание таблицы 4.1.4

 

1 2 3 4
-3
-2
-2
-1
-2
-4

 

4.1.5.Пусть Х – банахово пространство над полем К. Задает ли данная формула линейный ограниченный функционал ? В случае положительного ответа найти его норму (таблица 4.1.5).

 

Таблица 4.1.5

 

Вариант
1 2 3 4
с

Окончание таблицы 4.1.5

 

1 2 3 4  
с  
с
 

 

 







Дата добавления: 2015-08-30; просмотров: 241. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия