Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1. Используя теоремы об общем виде линейных ограниченных функционалов в различных пространствах, выяснить





 

1. Используя теоремы об общем виде линейных ограниченных функционалов в различных пространствах, выяснить, задает ли данная формула линейный ограниченный функционал. В случае положительного ответа найти его норму.

 

Пример 1. , .

 

Решение. По теореме об общем виде линейного ограниченного функционала в пространстве , для любого существует единственный вектор , такой, что для любого выполняется равенство . Обратно, если выполняется это равенство, то , причем . Рассмотрим вектор , у которого , , , а остальные координаты равны нулю. Тогда , и для этого вектора . В силу указанной теоремы является линейным ограниченным функционалом в пространстве , и

.

 

Пример 2. , .

 

Решение. Рассмотрим вектор

.

Для этого вектора выполняется равенство . Но (почему?). Значит, в силу теоремы об общем виде линейного ограниченного функционала в пространстве функционал не является линейным ограниченным.

 

Пример 3. , .

 

Решение. По теореме об общем виде линейного ограниченного функционала в пространстве для любого существует единственный вектор , такой, что выполняется равенство

,

и обратно. При этом . Рассмотрим вектор , для которого . Так как , то является линейным ограниченным функционалом, причем .

 

Пример 4. , .

Решение. По теореме об общем виде линейного ограниченного функционала в пространстве , для любого существует единственный вектор , такой, что выполняется равенство , и обратно. При этом . В данном случае , а поэтому .

Рассмотрим вектор , такой, что , а остальные . Для этого вектора . Так как , то является линейным ограниченным функционалом, причем

.

 

Пример 5. , .

Решение. По теореме об общем виде линейного ограниченного функционала в пространстве при для любого существует единственный вектор , такой, что выполняется равенство , и обратно. При этом . В данном случае , тогда . Преобразуем интеграл

Функция

 

принадлежит , так как функция интегрируема по Лебегу на отрезке . Отсюда в силу указанной теоремы является линейным ограниченным функционалом, причем

.

 

Пример 6. , .

 

Решение. По теореме об общем виде линейного ограниченного функционала в пространстве для любого существует единственная непрерывная слева функция , такая, что и выполняется равенство , и обратно, причем . Подберем функцию так, чтобы . При этом мы будем пользоваться следующей формулой:

(1)

которая справедлива, если – кусочно-непрерывно дифференцируемая функция, имеющая на точки разрыва первого рода со скачками соответственно, а вне точек разрыва ограниченную производную. Преобразуем , выполнив в интеграле замену . Тогда

.

Ввиду формулы (1) отсюда следует, что имеет 2 точки разрыва первого рода: со скачком в этой точке и со скачком . При этом на интервалах непрерывности должно выполняться следующее равенство:

.

Поэтому на интервалах непрерывности, содержащихся в отрезке , функция имеет вид , а на интервалах непрерывности, содержащихся в отрезке , функция постоянна (со своей константой на каждом интервале!). Учитывая, что функция согласно теореме должна быть непрерывной слева на отрезке и удовлетворять условию , получим (рисунок 7):

Так как

,

то . Значит, является линейным ограниченным функционалом, причем .

 

 

Рисунок 7 – График функции

 

2. Пусть Х – банахово пространство над полем К. Задает ли данная формула линейный ограниченный функционал ? В случае положительного ответа найти его норму.

Пример 1. , .

 

Решение. Очевидно, что функционал линеен. Оценим сверху:

, (2)

т. е. число 3 является константой ограниченности для . Значит, − ограниченный линейный функционал, причем

. (3)

Подберем ненулевой вектор так, чтобы неравенства (2) обратились в равенства. Подходит . Имеем , . Следовательно,

(4)

Из (3) и (4) заключаем, что .

 

Пример 2. , .

Решение. Очевидно, что − линейный функционал. Так как

,

то ограничен, причем (см. пример 1)

. (5)

Возьмем . Имеем , . Значит (см. пример 1),

. (6)

Из неравенств (5) и (6) получаем .

 

Пример 3. , .

Решение. Очевидно, − линейный функционал. Так как

, (7)

то ограничен, причем (см. пример 1)

. (8)

Подберем теперь непрерывную функцию так, чтобы выполнялись следующие условия, гарантирующие, что все неравенства в (7) обращаются в равенства:

.

Например, . Для нее , . Тогда имеем (см. пример 1)

. (9)

Вследствие неравенств (8) и (9) получаем .








Дата добавления: 2015-08-30; просмотров: 1607. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия