Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гильбертовы пространства и интегральные уравнения





Тема 5.1

Гильбертовы пространства. Основные понятия

 

Определение. Пусть − векторное пространство над полем К

Отображение ,обладающее следующими свойствами:

1)

2) ;

3) функционал линеен для любого у,

называется скалярным произведением. Пространство L, наделенное скалярным произведением, напзывается предгильбертовым.

Отметим, что вместо часто пишут.

Определение. Предгильбертово пространство Н, полное относительно нормы

,

называется гильбертовым.

Определение. Пусть − предгильбертово пространство. Векторы. х, у из L называются ортогональными (пишут ), если

Определение. Система векторов называется ортогональной, если входящие в нее векторы попарно ортогональны.

Определение. Ортогональная система векторов называется ортонормированной, если при всех .

Определение. Счетная ортонормированная система векторов называется ортонормированным базисом (о.н.б.), если каждый вектор х из L разлагается в ряд Фурье по этой системе, т. е. имеет место равенство

.

Определение. Система векторов называется максимальной, если из того, что , следует, что х =0.

Определение. Система векторов называется полной, если линейная оболочка этой системы всюду плотна.

Теорема (о базисе). Для счетной ортонормированной системы следующие утверждения равносильны:

1) - о. н. б.;

2) максимальна;

3) полна.

Определение. Пусть L – подпространство предгильбертова пространства Е, . Вектор называется проекцией вектора х на подпространство L, если .

Определение. Пусть М – подмножество предгильбертова пространства Е. Ортогональным дополнением множества М называется множество

.

Теорема (о разложении). Для замкнутого подпространства Е гильбертова пространства Н имеет место равенство

.

Следствие. Для замкнутого подпространства Е гильбертова пространства Н имеет место равенство

 

5.1.1 Пусть − заданное векторное пространство над полем . Проверить аксиомы скалярного произведения для функции (таблица 5.1.1).

 

Таблица 5.1.1

 

Вариант
1 2 3
 
 
   
 
 

 

Окончание таблицы 5.1.1

 

1 2 3
 
 
 
 
 

 

5.1.2 В гильбертовом пространстве найти проекцию вектора на заданное подпространство (таблица 5.1.2).

Таблица 5.1.2

 

Вариант
1 2 3 4
 
 
  ,
  ,
  ,

 

 

Окончание таблицы 5.1.2

 

1 2 3 4
   
 
 
 
 

 

5.1.3. Доказать, что в указанном нормированном пространстве со стандартной нормой нельзя ввести скалярное произведение, порождающее эту норму (таблица 5.1.3).

 

Таблица 5.1.3

 

Вариант X Вариант X
   
   
   
   
   

 

5.1.4. Вычислить угол между данными векторами : а) в пространстве , б) в пространстве (пространства считать вещественными) (таблица 5.1.4).

 

Таблица 5.1.4

 

Вариант
 
 
 
 
 
 
 
   
 
 

 

5.1.5. Становится ли система векторов после нормировки ортонормированным базисом пространства (мы полагаем единица стоит на n -ном месте) (таблица 5.1.5).

 

Таблица 5.1.5

 

Вариант
1 2 3 4
 
 
 

Окончание таблицы 5.1.5

 

1 2 3 4
 
 
 
 
 
 
 

 

5.1.6. Для данного подмножества М гильбертова пространства найти ортогональное дополнение (таблица 5.1.6).

 

Таблица 5.1.6

 

Вариант М
     
  при
    при
 
   

Окончание таблицы 5.1.6

 

1 2 3
 
 
  при
  при
 
   

 

 







Дата добавления: 2015-08-30; просмотров: 1615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия