Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Идентификация объекта регулирования с использованием векторно-матричного описания





Конечно-разностное уравнений может быть представлено в векторно-матричном виде следующим образом:

(1.1)

где

Критерий метода наименьших квадратов в векторно-матричном виде запишется:

, где (1.2).

Вектор экспериментальных значений выхода размерности n0 примет вид: . Вектор, рассчитанных по модели значений выхода объекта, размерностью n0 :

С учетом выражения (1.1) вектор y может быть представлен следующим выражением:

(1.3)

где матрица вида

=

Это матрица экспериментальных значений входа и выхода. Каждая из строк которой предназначена для расчета по модели соответствующего выхода объекта. С учетом выражения (1.3) критерий метода наименьших квадратов примет следующий вид:

(1.4)

Система линейных уравнений, полученная путем дифференцирования критерия Ф по параметрам конечно-разностного уравнения примет вид:

(1.5.а)

где или (1.5.b)

Выполняя преобразование выражений (1.5.а) и (1.5.b) можно представить их в виде:

 

(1.6.а)

(1.6.b)

Выражая из (1.6.а) и (1.6.б) вектор параметров конечно-разностных уравнений получим:

(1.7a)

(1.7b)

Как видно из формул расчета вектор оценок искомых параметров модели (1.7.а), (1.7.б) необходимым условием является обратимость матрицы . Из вида матрицы , имеющей размерность следует, что ее ранг не может превышать наименьшую размерность, т.е.

Если количество измерений N0 меньше количества искомых параметров (n+1), то ранг матрицы будет равен: , тогда по известному свойству ранг произведения не будет превышать количества измерений N0.

. На основе этого равенства следует, что определитель матрицы , поскольку размерность . В этом случае система уравнений (1.5.а), (1.5.b) может быть либо несовместимой (т.е. не имеет решения), либо не определенной (имеет бесконечное множество решений). Вне зависимости от результата из полученного следует, что оценка параметров конечно-разностного уравнения не может быть найдена. Таким образом, при идентификации экспериментальных значений должно быть больше количества определяемых параметров КРУ.

 







Дата добавления: 2015-08-17; просмотров: 550. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия