Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрическая идентификация дискретной динамической модели методом наименьших квадратов





Одним из важных этапов синтеза оптимальной системы регулирования является разработка динамической модели ОУ, включающая:

  1. определение структуры (порядка) конечно-разностного уравнения
  2. определение численных значений параметров конечно-разностного уравнения заданной структуры.

Для этого используются соответственно методы структурной и параметрической идентификации. Параметрическая идентификация проверяется после выбора структуры объекта (порядка уравнения) на основе экспериментальных данных, значений входа и выхода, полученных по результатам снятия кривой разгона. Идентификация проводится для значений приращений, тоже и с величиной входного значения. Идентификация – это разработка дискретной динамической модели объекта регулирования на основе экспериментально-статистического подхода по экспериментальным данным входа и выхода.

Рассмотрим использование МНК для параметрической идентификации конечно-разностного уравнения второго порядка без запаздывания:

Критерий МНК имеет вид:

Таким образом, из критерия метода наименьших квадратов следует, что необходимо найти такие параметры конечно-разностного уравнения, которые обеспечили бы минимальные суммы квадратов разностей между экспериментальными значениями выхода и рассчитанными по модели. При определении расчетных значений выхода ОУ при идентификации могут быть использованы экспериментальные значения выхода и входа на предыдущих тактах квантования, т.е. . Тогда, подставляя правую часть записанного выражения в критерий метода наименьших квадратов, получим:

Полученная таким образом задача с точки зрения математики является задачей на поиск экстремума функционала Ф по параметрам a1,a2,b. Необходимое условие существование минимума является равенство нулю всех первых частных производных функционала Ф по неизвестным параметрам a1,a2,b, т.к. Ф является квадратичным функционалом, то необходимое условие является также и достаточным. Следовательно, возьмем частные производные и приравняем к нулю. После решим систему линейных уравнений относительно неизвестных a1,a2,b, в которой число уравнений равно числу неизвестных. Для взятия производных используется следующие правила дифференцирования:

  1. дифференцирование функции нескольких переменных

2. взятие производной от суммы

3. взятие производной от сложной функции

Получим:

Приравнивая к нулю полученные производные, раскрывая скобки, в слагаемых, содержащих параметры , выносим их за знак суммы:

Выражения под знаком суммы, являются некоторыми коэффициентами, константами. Решая полученную систему линейных и однородных уравнений одним из известных аналитических методов (Гаусса, Крамара, матричный), находим искомые параметры . Осуществим проверку адекватности. В случае положительного результата (модель адекватна) получаем модель, которая принимается для последующего ее использования в задачах анализа и синтеза. При решении задач анализа динамических свойств объекта (задач моделирования по полученному конечно-разностному уравнению) расчет текущих значений выхода объекта осуществляется на основе значений выхода объекта, рассчитанных по этому же уравнению на предыдущих тактах квантования.

Обобщая полученные выкладки для конечно-разностного уравнения n-го порядка получим: . Критерий метода наименьших квадратов примет вид: . Тогда частные производные по искомым параметрам примут вид:

Перед использованием экспериментальных значений входа и выхода для идентификации необходимо сформировать массивы их экспериментальных значений с учетом приведенных начальных условий. Начальные условия будут иметь следующий вид:

где . Под подразумеваются ненулевые значения входа и выхода приращения.

 







Дата добавления: 2015-08-17; просмотров: 1679. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия