Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНДЕКСНЫЙ МЕТОД.





Индексы относительные величины, характеризующие соотно­шение явлений во времени, пространстве и по сравнению с планом. Раз­личают индексы индивидуальные, общие, агрегатные, факторные, пере­менного и фиксированного состава. Индексы применяют для характе­ристики динамики сложных совокупностей и измерения роли отдельных факторов в динамике обобщающих показателей хозяйственной деятель­ности. Метод построения общих индексов, позволяющих соотносить показатели по сложным совокупностям, составляет особый прием анали­за, именуемый индексным методом.

Изучая зависимость объема выпуска продукции (N) на предпри­ятии от изменений численности работающих (R) и производительности их труда (D), используют следующие индексы:

Взаимосвязь показателей представляется индексной системой IN = IR•1D, которая позволяет вычислить общий абсолютный прирост объема продукции ( Δ N) и прирост, вызванный изменениями факторов численности ( Δ NR) и производительности труда работающих (Δ ND):

МЕТОД ДИФФЕРЕНЦИРОВАННОГО ИСЧИСЛЕНИЯ основан на формуле полного дифференциала. Для функции от двух переменныхz = f (х, у) имеем полное приращение функции Δz:

 

 

Таким образом, влияние фактора х на обобщающий показатель определяется по формуле

влияние фактора у:

Логарифмический метод. Этот метод дает логарифмически про­порциональное распределение прироста показателя по анализируемым факторам. Для факторной системы z = ху абсолютное изменение показа­теля z за счет факторов х и у определяется по формулам:

Интегральный метод дает наиболее общий подход к решению за­дач факторного анализа по разложению общего прироста показателя по факторным приращениям. В основе интегрального метода лежит интег­рал Эйлера—Лагранжа, устанавливающий связь между приращением функции и приращением факторных признаков. Для функции z = f (х, у) имеем следующие формулы расчета факторных влияний.

1. По методу дифференцирования:

Δ zX = f’ X • Δ х — влияние фактора х,

где f’ X — частная производная функции пох;

Δ zY = f’ Y Δ у — влияние фактора у,

где f’ Y частная производная функции по у.

2. По интегральному методу:

Δ zX = ∫f‘ X d x — влияние фактора х;

Δ zY = ∫f’ Y d y — влияние фактора у.

 

 

ИНТЕГРАЛЬНЫЙ МЕТОД. Данный метод является обобщением метода цепных подстановок и логарифмического метода. При некоторых предположениях они выводятся из интегрального метода как частные случаи.

Для применения интегрального метода требуются знание основ дифференциального исчисления, техники интегрирования и умение на­ходить производные различных функций. Вместе с тем в теории анализа хозяйственной деятельности для практических приложений разработа­ны конечные рабочие формулы интегрального метода для наиболее рас­пространенных видов факторных зависимостей, что делает этот метод доступным для каждого аналитика. Приведем некоторые из них.

1. Факторная модель типа и = ху:

Δ u = Δ uX + Δ uY;

Δ uX = y O Δ х + (Δ x · Δ y)/ 2;

Δ uY = x OΔ y + (Δ x · Δ y)/2;

Δ uY = Δ u - Δ uX.

2. Факторная модель типа u = xyz:

Δ u = Δ uX + Δ uY + Δ uY;

Δ uX = y O • z O Δ x + 1/2 y O • Δ x • Δ z + 1/2 z O Δ x • Δ y + 1/3Δ y • Δ z • Δ x;

Δ uY = x O • z O Δ y + 1/2 x O Δ y • Δ z + 1/2 z O Δ х • Δ y + 1/3Δ y • Δ z • Δ х;

Δ uZ = x O • y O • Δ z + 1/2 x O Δ z • Δ y + 1/2 y O • Δ z • Δ x + Δ y • Δ z • Δ x.

3. Факторная модель типа и = x/y:

Δ u = Δ uX + Δ uY;

Δ uX = Δ x/ Δ y • ln ׀ y 1/ y 0׀;

Δ uY = Δ u - Δ uX.

Интегральный метод дает точные оценки факторных влияний. Ре­зультаты расчетов не зависят от последовательности подстановок и по­следовательности расчета факторных влияний. Метод применим для всех видов непрерывно дифференцируемых функций; не требует пред­варительных знаний о том, какие факторы количественные, какие качест­венные. Вместе с тем данный метод не работает при наличии взаимосвя­зей между факторами, исследовании влияний не только от исходных факторов, но и функций от них.







Дата добавления: 2015-08-17; просмотров: 466. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия