Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНДЕКСНЫЙ МЕТОД.





Индексы относительные величины, характеризующие соотно­шение явлений во времени, пространстве и по сравнению с планом. Раз­личают индексы индивидуальные, общие, агрегатные, факторные, пере­менного и фиксированного состава. Индексы применяют для характе­ристики динамики сложных совокупностей и измерения роли отдельных факторов в динамике обобщающих показателей хозяйственной деятель­ности. Метод построения общих индексов, позволяющих соотносить показатели по сложным совокупностям, составляет особый прием анали­за, именуемый индексным методом.

Изучая зависимость объема выпуска продукции (N) на предпри­ятии от изменений численности работающих (R) и производительности их труда (D), используют следующие индексы:

Взаимосвязь показателей представляется индексной системой IN = IR•1D, которая позволяет вычислить общий абсолютный прирост объема продукции ( Δ N) и прирост, вызванный изменениями факторов численности ( Δ NR) и производительности труда работающих (Δ ND):

МЕТОД ДИФФЕРЕНЦИРОВАННОГО ИСЧИСЛЕНИЯ основан на формуле полного дифференциала. Для функции от двух переменныхz = f (х, у) имеем полное приращение функции Δz:

 

 

Таким образом, влияние фактора х на обобщающий показатель определяется по формуле

влияние фактора у:

Логарифмический метод. Этот метод дает логарифмически про­порциональное распределение прироста показателя по анализируемым факторам. Для факторной системы z = ху абсолютное изменение показа­теля z за счет факторов х и у определяется по формулам:

Интегральный метод дает наиболее общий подход к решению за­дач факторного анализа по разложению общего прироста показателя по факторным приращениям. В основе интегрального метода лежит интег­рал Эйлера—Лагранжа, устанавливающий связь между приращением функции и приращением факторных признаков. Для функции z = f (х, у) имеем следующие формулы расчета факторных влияний.

1. По методу дифференцирования:

Δ zX = f’ X • Δ х — влияние фактора х,

где f’ X — частная производная функции пох;

Δ zY = f’ Y Δ у — влияние фактора у,

где f’ Y частная производная функции по у.

2. По интегральному методу:

Δ zX = ∫f‘ X d x — влияние фактора х;

Δ zY = ∫f’ Y d y — влияние фактора у.

 

 

ИНТЕГРАЛЬНЫЙ МЕТОД. Данный метод является обобщением метода цепных подстановок и логарифмического метода. При некоторых предположениях они выводятся из интегрального метода как частные случаи.

Для применения интегрального метода требуются знание основ дифференциального исчисления, техники интегрирования и умение на­ходить производные различных функций. Вместе с тем в теории анализа хозяйственной деятельности для практических приложений разработа­ны конечные рабочие формулы интегрального метода для наиболее рас­пространенных видов факторных зависимостей, что делает этот метод доступным для каждого аналитика. Приведем некоторые из них.

1. Факторная модель типа и = ху:

Δ u = Δ uX + Δ uY;

Δ uX = y O Δ х + (Δ x · Δ y)/ 2;

Δ uY = x OΔ y + (Δ x · Δ y)/2;

Δ uY = Δ u - Δ uX.

2. Факторная модель типа u = xyz:

Δ u = Δ uX + Δ uY + Δ uY;

Δ uX = y O • z O Δ x + 1/2 y O • Δ x • Δ z + 1/2 z O Δ x • Δ y + 1/3Δ y • Δ z • Δ x;

Δ uY = x O • z O Δ y + 1/2 x O Δ y • Δ z + 1/2 z O Δ х • Δ y + 1/3Δ y • Δ z • Δ х;

Δ uZ = x O • y O • Δ z + 1/2 x O Δ z • Δ y + 1/2 y O • Δ z • Δ x + Δ y • Δ z • Δ x.

3. Факторная модель типа и = x/y:

Δ u = Δ uX + Δ uY;

Δ uX = Δ x/ Δ y • ln ׀ y 1/ y 0׀;

Δ uY = Δ u - Δ uX.

Интегральный метод дает точные оценки факторных влияний. Ре­зультаты расчетов не зависят от последовательности подстановок и по­следовательности расчета факторных влияний. Метод применим для всех видов непрерывно дифференцируемых функций; не требует пред­варительных знаний о том, какие факторы количественные, какие качест­венные. Вместе с тем данный метод не работает при наличии взаимосвя­зей между факторами, исследовании влияний не только от исходных факторов, но и функций от них.







Дата добавления: 2015-08-17; просмотров: 466. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия