Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства степенных рядов





 

Теорема 1. Всякий степенной ряд (2) с радиусом сходимости R > 0 сходится равномерно

на всяком отрезке, содержащемся в интервале сходимости (-R,R).

Теорема 2. Сумма степенного ряда (2) есть ф-ция, непрерывная в каждой точке интервала

сходимости ряда.

Степенной ряд в его интервале сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем в результате этих операций получаются степенные ряды, имеющие тот же радиус сходимости, что и исходный ряд.

Интегрирование и дифференцирование степенных рядов позволяет заданные ряды сводить к уже известным рядам.

 

Пример 1. Вычислить .

Сопоставим заданному числовому ряду степенной ряд

.

Исследуем ряд на сходимость по признаку Даламбера: .

К какому ряду он ближе всего? К ряду геометрической прогрессии

, который равномерно сходится при Исходный ряд можно получить посредством интегрирования ряда геометрической прогрессии

.

Следовательно .

 

Пример 2. Вычислить .

Сопоставим заданному числовому ряду степенной ряд

. Очевидно ряд сходится при .

Преобразуем ряд геометрической прогрессии к заданному ряду, продифференцировав его:

.

 







Дата добавления: 2015-08-18; просмотров: 639. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия