Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Достаточные признаки сходимости рядов с неотрицательными членами





 

Название признака формулировка Когда применяется
1.Интегральный признак Коши ; un =f(n); Если f(x) при х 1 есть непрерывная, положительная и монотонно убывающая функция ряд сходится, если сходится несобственный интеграл и расходится, если этот интеграл расходится. Для рядов типа интегрируемых функций
2. Признак сравнения 1   3. Признак сравнения 2 Пусть даны два знакоположительных ряда Причем для всех n > N. Тогда из сходимости ряда (2) сходимость ряда (1) и из расходимости ряда (1) следует расходимость ряда (2).   Если предел отношения этих рядов существует и конечен , то ряды (1) и (2) ведут себя одинаково (сходятся и расходятся одновременно). Эталонные ряды: 1) Геометрический ряд   2) Ряд - .     Применяется для решения вопроса о сходимости рядов, для которых, используя замену бесконечно малых величин эквивалентными, можно привести ряд к эталонному  
4. Признак Даламбера Если существует для рядов, общие члены которых содержат степенные, показательные выражения и факториалы
5.Радикальный признак Коши Если существует Для рядов, общий член которых представляет собой n -ю степень выражения

 







Дата добавления: 2015-08-18; просмотров: 660. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия