Студопедия — Достаточные признаки сходимости рядов с неотрицательными членами
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Достаточные признаки сходимости рядов с неотрицательными членами






 

Название признака формулировка Когда применяется
1.Интегральный признак Коши ; un =f(n); Если f(x) при х 1 есть непрерывная, положительная и монотонно убывающая функция ряд сходится, если сходится несобственный интеграл и расходится, если этот интеграл расходится. Для рядов типа интегрируемых функций
2. Признак сравнения 1   3. Признак сравнения 2 Пусть даны два знакоположительных ряда Причем для всех n > N. Тогда из сходимости ряда (2) сходимость ряда (1) и из расходимости ряда (1) следует расходимость ряда (2).   Если предел отношения этих рядов существует и конечен , то ряды (1) и (2) ведут себя одинаково (сходятся и расходятся одновременно). Эталонные ряды: 1) Геометрический ряд   2) Ряд - .     Применяется для решения вопроса о сходимости рядов, для которых, используя замену бесконечно малых величин эквивалентными, можно привести ряд к эталонному  
4. Признак Даламбера Если существует для рядов, общие члены которых содержат степенные, показательные выражения и факториалы
5.Радикальный признак Коши Если существует Для рядов, общий член которых представляет собой n -ю степень выражения

 







Дата добавления: 2015-08-18; просмотров: 617. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия