Решение.
Сначала отдельно выберем 4 мальчика из 16 и 3 девочки из 12. Так как порядок размещения не учитывается, то соответственные соединения – сочетания без повторений. Учитывая необходимость одновременного выбора и мальчиков, и девочек, используем правило произведения. В результате число способов будет вычисляться таким образом: С164 · С123 = (16!/(4! · 12!)) · (12!/(3! · 9!)) = ((13 · 14 · 15 · 16) / (2 · 3 · 4)) ·((10 · 11 · 12) / (2 · 3)) = 400 400. Ответ: 400 400. Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества. Классическая вероятность В классической схеме вероятность любого события определяется как отношение числа m благоприятных для события A элементарных исходов к общему числу элементарных исходов n. Пример 1: Некто, перетасовывая колоду из 36 карт, извлекает оттуда случайным образом одну карту. Какова вероятность того, что это будет туз? Решение: Пример 2: В конверте среди 25 карточек находится разыскиваемая карточка. Из конверта наудачу извлечено 6 карточек. Какова вероятность, что среди них окажется нужная карточка? Решение:
|