Решение. Данный определённый интеграл (интегральный синус) можно вычислить только приближённо
Данный определённый интеграл (интегральный синус) можно вычислить только приближённо. Для этого разложим подынтегральную функцию в ряд Тейлора . Отсюда Здесь ограничились двумя первыми членами этого знакочередующегося ряда, удовлетворяющий условиям признака Ляйбница, так как третий член . Чтобы вычислить программно интегральный синус удобно представить в виде суммы ряда
[kgl].
[gl] Тема 22. Численные методы решения обыкновенных дифференциальных уравнений [:]
Теория дифференциальных уравнений – раздел математики, который занимается изучением дифференциальных уравнений и связанных с ними задач. Её результаты применяются во многих естественных науках, особенно широко – в физике и механике. Неформально говоря, дифференциальное уравнение – это уравнение, в котором неизвестной величиной является некоторая функция. При этом в самом уравнении участвует не только неизвестная функция, но и различные производные от неё. Дифференциальным уравнением называется уравнение, связывающее аргумент, функцию этого аргумента и производные этой функции до некоторого порядка включительно. Наивысший порядок производной, входящей в дифференциальное уравнение, называется порядком уравнения. Различают обыкновенные дифференциальные уравнения (ОДУ) и дифференциальные уравнения в частных производных (ДУЧП). Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени. Обыкновенные дифференциальные уравнения – это уравнения вида , где x = x (t) – неизвестная функция, зависящая от переменной времени t, штрих означает дифференцирование по t. Число n называется порядком дифференциального уравнения. Дифференциальное уравнение в частных производных – это уравнение, содержащее неизвестные функции от нескольких переменных и их частные производные. Решение задач на нахождение функции по заданным свойствам сводится к решению уравнения, связывающего искомую функцию и величины, задающие их свойства. Поскольку свойства функции выражаются через её производные, то, решая указанную выше задачу, приходим к уравнению, связывающему искомую функцию и её производные. Решая полученное дифференциальное уравнение, находят искомую функцию. Решением дифференциального уравнения называют любую функцию, при подстановке которой в это уравнение получается тождество. График решения дифференциального уравнения называется интегральной кривой этого уравнения.
|