Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. N = 0, 1, 2 (три узла интерполяции).





N = 0, 1, 2 (три узла интерполяции).

– уравнение параболы, проходящей через точки (x 0, y 0), (x 1, y 1), (x 2, y 2);

.

Построим график этой функции (рисунок 18.1) и отметим узловые точки Mi (xi, yi). Это квадратичная парабола с вертикальной осью симметрии. Её график проходит через три заданные точки.

 

O
 
 
 
 
 
 
 
 
y = 2 x 3 – 12 x + 22
M 1
x
y
M 2
M 3

 


Рисунок 18.1 – График полученной функции

[kgl].

 

[gl] Тема 19. Числовые ряды. Частные суммы. Вычисление суммы рядов. Схема алгоритма вычисления суммы [:]

 

Ряды играют исключительную роль в математике как очень эффективное средство математического исследования и моделирования. Известные всем таблицы тригонометрических функций, таблицы логарифмов и т. п. составляются с помощью рядов для этих функций. Точное значение числа π также получается с помощью ряда.

Понятие суммы конечного числа чисел и свойства суммы были известны уже в древнейшие времена. С частными примерами сумм бесконечных рядов, например, с суммой членов убывающей геометрической прогрессии, математики имели дело уже во времена Архимеда. Успешно пользовались рядами Ньютон, Ляйбниц, Эйлер, Гаусс. Однако точная теория рядов, основанная на понятии предела последовательности и содержащая доказательства основных теорем, была построена в первой половине XIX в. в основном Коши. С тех пор ряды стали незаменимым средством для математики, появились разделы математики, например, теория аналитических фунций, целиком основанные на теории рядов.

Сумма членов бесконечной числовой последовательности u 1, u 2, …, un, … называется числовым рядом.

,

при этом числа u 1, u 2, … будем называть членами ряда, а un – общим членом ряда.

Суммы называются частичными (частными, парциальными) суммами ряда

,

,

,

Таким образом, возможно рассматривать последовательности частичных сумм ряда . При этом разность между суммой S и частичной суммой Sn называется n -м остатком ряда Rn = SSn.

Так как S есть предел последовательности Sn, то очевидно:

.

Поэтому, взяв достаточно большое число членов сходящегося ряда, сумму этого ряда можно вычислить с необходимой степенью точности.

Для сходящегося ряда его n –й член un при неограниченном возрастании номера n стремится к нулю, т. е. ; .

Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм

.

Если последовательность частных сумм ряда расходится, т. е. не имеет предела или имеет бесконечный предел, то ряд называется расходящимся и ему неставят в соответствие никакой суммы.

Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна CS (C ≠ 0).

Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Если ряды и сходятся и их суммы равны соответственно S и σ, то ряд тоже сходится и его сумма равна S + σ:

Разность двух сходящихся рядов также будет сходящимся рядом.

 

Пример 19.1. С помощью радикального признака Коши исследовать ряд на сходимость.







Дата добавления: 2015-08-29; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия