Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. .





Имеем: f (x) = x 3,

,

;

O
0.5
1
1.5
2
x
y
2
4
6
Рисунок 17.3 – Решение задачи
(рисунок 17.3)

a) по формуле прямоугольников:

т. е.

b) по формуле трапеций:

т. е.

c) по формуле парабол:

т. е.

Точное значение интеграла

Абсолютные погрешности соответствующих формул таковы: a) 0.125; b) 0.25; c) 0.

 

[kgl].

 

[gl] Тема 18. Интерполяция и экстраполяция. Интерполяционный полином Лагранжа [:]

 

Интерполяция – способ нахождения промежуточых значений величины по имеющемуся дискретному набору известных значений.

В научных и инженерных расчётах часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Например, известны некоторые значения функции – физической величины, замеренные через один час. Необходимо найти значения в промежутках через 30 мин.

Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, т. е. интерполировать, более простую функцию. Разумеется, использование упрщённой функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция, но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Наиболее часто встречающимся видом точечной аппроксимации является интерполяция. Пусть задан дискретный набор точек xi (i = 0, 1, …, n), называемых узлами интерполяции, причём среди этих точек нет совпадающих, а также значения функции yi в этих точках. Требуется построить функцию g (x), проходящую через все заданные узлы. Таким образом, критерием близости функции является g (xi) = yi. В качестве функции g (x) обычно выбирается полином, который называют интерполяционным полиномом. В том случае, если полином един для всей области интерполяции, говорят, что интерполяция глобальная.

В тех случаях, когда между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции. Найдя интерполяционный полином, можно вычислить значения функции f (x) между узлами (провести интерполяцию в узком смысле слова), а также определить значение функции f (x) даже за пределами заданного интервала (провести экстраполяцию).

Пусть имеется n значений xi, каждому из которых соответствует своё значение yi. Требуется найти такую функцию F, что:

При этом:

· xi называют узлами интерполяции;

· пары (xi, yi) называют точками данных;

· разницу между соседними значениями (xixi 1) называют шагом;

· функцию F (x) – интерполирующей функцией или интерполянтом.

Задача интерполирования состоит в том, чтобы по значениям функции в некоторых точках восстановить её значения в остальных точках отрезка. Функция F называется интерполирующей, точки x 0, x 1, x 2, …, xn – узлами интерполяции.

Будем искать функцию F в виде полинома степени n:

Можно найти коэффициенты ai, i = 0, 1, 2, …, n, при этом получим систему из (n + 1) уравнений с (n + 1) неизвестными

Эта система имеет единственное решение, так как по нашему предположению все xi различны. Решая эту систему относительно неизвестных a 0, a 1, a 2, …, an, получим аналитическое выражение полинома.

Описанный приём можно использовать при решении задач интерполирования, но на практике используют другие более удобные и менее трудоёмкие методы.







Дата добавления: 2015-08-29; просмотров: 558. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия