Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Подынтегральная функция на отрезке a = 0 и b = 1 равна .





Подынтегральная функция на отрезке a = 0 и b = 1 равна .

Находим шаг вычислений

.

Отсюда точки иртегрирования:

.

Тогда по формуле трапеций имеем

.

Ответ: .

Пример 16.2. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

Пример 16.3. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

[kgl].

 

[gl] Тема 17. Метод Симпсона (парабол). Геометрическая инртерпретация метода [:]

 

Если заменить график функции y = f (x) на каждом отрезке [ x I 1; xi ] разбиения не отрезками прямых, как в методах трапеций и прямоугольников, а дугами парабол, то получим более точную формулу приближённого вычисления интеграла .

Предварительно найдём площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = ax 2 + bx + c (с осью симметрии, параллельной оси ординат Oy), сбоку – прямыми x = – h, x = h и снизу – отрезком [– h; h ].

Пусть парабола проходит через три точки , где – ордината параболы в точке x = – h; y 1 = c – ордината параболы в точке x = 0; – ордината параболы в точке x = h (рисунок 17.1).

 

M 3
y = ax 2 + bx + c
M 2
M 1
y 0
y 1
y 2
y
h
O
h
x

 

 


Рисунок 17.1 – К элементарной формуле парабол

Площадь S равна

. (17.1)

Выразим эту площадь через h, y 0, y 1, y 2. Из равенств для ординат yi находим, что . Подставляя эти значения c и a в равенство (17.1), получаем

. (17.2)

Получим теперь формулу парабол для приближённого вычисления интеграла .

Для этого отрезок [ a; b ] разобьём на 2 n частей (отрезков) длиной точками .

В точках деления вычисляем значения подынтегральной функции f (x): , где yi = f (xi) (рисунок 17.2).

 

y
x
y = f (x)
y 0
y 1
y 2
y 2 n – 2
y 2 n – 1
y 2 n
x 2 n – 2
x 2 n – 1
x 2 n = b
x 2
x 1
x 3
a = x 0
O

 


Рисунок 17.2 – Приближённое вычисление интеграла по формуле Симпсона (парабол)

Заменяем каждую пару соседних элементарных криволинейных трапеций с основаниями, равными h, одной элементарной параболической трапецией с основанием, равным 2 n. На отрезке [ x 0, x 2] парабола проходит через три точки (x 0; y 0), (x 1; y 1); (x 2; y 2). Используя формулу (17.2), находим

.

Аналогично находим

Сложив полученные равенства, имеем

или

(17.3)

Формула (17.3) называется формулой парабол (или Симпсона).

 

Пример 17.1. Вычислить приближённо определённый интеграл , разбив отрезок [0; 2] на 4 части.

 







Дата добавления: 2015-08-29; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия