Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Подынтегральная функция на отрезке a = 0 и b = 1 равна .





Подынтегральная функция на отрезке a = 0 и b = 1 равна .

Находим шаг вычислений

.

Отсюда точки иртегрирования:

.

Тогда по формуле трапеций имеем

.

Ответ: .

Пример 16.2. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

Пример 16.3. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

[kgl].

 

[gl] Тема 17. Метод Симпсона (парабол). Геометрическая инртерпретация метода [:]

 

Если заменить график функции y = f (x) на каждом отрезке [ x I 1; xi ] разбиения не отрезками прямых, как в методах трапеций и прямоугольников, а дугами парабол, то получим более точную формулу приближённого вычисления интеграла .

Предварительно найдём площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = ax 2 + bx + c (с осью симметрии, параллельной оси ординат Oy), сбоку – прямыми x = – h, x = h и снизу – отрезком [– h; h ].

Пусть парабола проходит через три точки , где – ордината параболы в точке x = – h; y 1 = c – ордината параболы в точке x = 0; – ордината параболы в точке x = h (рисунок 17.1).

 

M 3
y = ax 2 + bx + c
M 2
M 1
y 0
y 1
y 2
y
h
O
h
x

 

 


Рисунок 17.1 – К элементарной формуле парабол

Площадь S равна

. (17.1)

Выразим эту площадь через h, y 0, y 1, y 2. Из равенств для ординат yi находим, что . Подставляя эти значения c и a в равенство (17.1), получаем

. (17.2)

Получим теперь формулу парабол для приближённого вычисления интеграла .

Для этого отрезок [ a; b ] разобьём на 2 n частей (отрезков) длиной точками .

В точках деления вычисляем значения подынтегральной функции f (x): , где yi = f (xi) (рисунок 17.2).

 

y
x
y = f (x)
y 0
y 1
y 2
y 2 n – 2
y 2 n – 1
y 2 n
x 2 n – 2
x 2 n – 1
x 2 n = b
x 2
x 1
x 3
a = x 0
O

 


Рисунок 17.2 – Приближённое вычисление интеграла по формуле Симпсона (парабол)

Заменяем каждую пару соседних элементарных криволинейных трапеций с основаниями, равными h, одной элементарной параболической трапецией с основанием, равным 2 n. На отрезке [ x 0, x 2] парабола проходит через три точки (x 0; y 0), (x 1; y 1); (x 2; y 2). Используя формулу (17.2), находим

.

Аналогично находим

Сложив полученные равенства, имеем

или

(17.3)

Формула (17.3) называется формулой парабол (или Симпсона).

 

Пример 17.1. Вычислить приближённо определённый интеграл , разбив отрезок [0; 2] на 4 части.

 







Дата добавления: 2015-08-29; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия