Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Подынтегральная функция на отрезке a = 0 и b = 1 равна .





Подынтегральная функция на отрезке a = 0 и b = 1 равна .

Находим шаг вычислений

.

Отсюда точки иртегрирования:

.

Тогда по формуле трапеций имеем

.

Ответ: .

Пример 16.2. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

Пример 16.3. Пользуясь формулой трапеций вычислить определённый интеграл

.

 

[kgl].

 

[gl] Тема 17. Метод Симпсона (парабол). Геометрическая инртерпретация метода [:]

 

Если заменить график функции y = f (x) на каждом отрезке [ x I 1; xi ] разбиения не отрезками прямых, как в методах трапеций и прямоугольников, а дугами парабол, то получим более точную формулу приближённого вычисления интеграла .

Предварительно найдём площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = ax 2 + bx + c (с осью симметрии, параллельной оси ординат Oy), сбоку – прямыми x = – h, x = h и снизу – отрезком [– h; h ].

Пусть парабола проходит через три точки , где – ордината параболы в точке x = – h; y 1 = c – ордината параболы в точке x = 0; – ордината параболы в точке x = h (рисунок 17.1).

 

M 3
y = ax 2 + bx + c
M 2
M 1
y 0
y 1
y 2
y
h
O
h
x

 

 


Рисунок 17.1 – К элементарной формуле парабол

Площадь S равна

. (17.1)

Выразим эту площадь через h, y 0, y 1, y 2. Из равенств для ординат yi находим, что . Подставляя эти значения c и a в равенство (17.1), получаем

. (17.2)

Получим теперь формулу парабол для приближённого вычисления интеграла .

Для этого отрезок [ a; b ] разобьём на 2 n частей (отрезков) длиной точками .

В точках деления вычисляем значения подынтегральной функции f (x): , где yi = f (xi) (рисунок 17.2).

 

y
x
y = f (x)
y 0
y 1
y 2
y 2 n – 2
y 2 n – 1
y 2 n
x 2 n – 2
x 2 n – 1
x 2 n = b
x 2
x 1
x 3
a = x 0
O

 


Рисунок 17.2 – Приближённое вычисление интеграла по формуле Симпсона (парабол)

Заменяем каждую пару соседних элементарных криволинейных трапеций с основаниями, равными h, одной элементарной параболической трапецией с основанием, равным 2 n. На отрезке [ x 0, x 2] парабола проходит через три точки (x 0; y 0), (x 1; y 1); (x 2; y 2). Используя формулу (17.2), находим

.

Аналогично находим

Сложив полученные равенства, имеем

или

(17.3)

Формула (17.3) называется формулой парабол (или Симпсона).

 

Пример 17.1. Вычислить приближённо определённый интеграл , разбив отрезок [0; 2] на 4 части.

 







Дата добавления: 2015-08-29; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия