Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционный полином Лагранжа





Пусть функция f (x) задана таблицей. Построим интерполяционный полином Ln (x), степень которого не больше n и выполняются условия: Ln (xi) = yi, i = 0, 1, 2, …, n. Будем искать Ln (x) в виде

,

где pi (x) – полином степени n;

, т. е. pi (x) только в одной точке отличен от нуля при i = j, а в остальных точках он обращается в нуль. Следовательно, все эти точки являются для него корнями:

;

при x = xi

;

;

подставим c в формулу pi (x), получим:

,

отсюда

Это и есть интерполяционный полином Лагранжа. По исходной таблице формула позволяет весьма просто составить внешний вид полинома.

Пример 18.1. Построить интерполяционный полином Лагранжа для функции, заданной таблично

x        
y        

 

Решение

Степень Ln (x) не выше третьей, так как функция задаётся четырьмя значениями:

.

График этой функции представляет собой кубическую параболу.

 

Пример 18.2. Построить интерполяционный полином Лагранжа для функции y = sin(π x), выбрав узлы .

Решение

Вычислим соответствующие значения функции:

.

Применяя формулу, получаем

.

 

Пример 18.3. Построить интерполяционный полином степени n ≤ 2, принимающий в точках x 0 = 1, x 1 = 3, x 2 = 5 соответственно значения y 0 = 2, y 1 = 1, y 2 = 8.

Решение

По формуле запишем:

.

Преобразовав, получим:

.

Пример 18.4. Построить интерполяционный полином Лагранжа для трёх узлов интерполяции:

x x 0 x 1 x 2
y y 0 y 1 y 2

 

x      
y      

 







Дата добавления: 2015-08-29; просмотров: 775. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия