Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционный полином Лагранжа





Пусть функция f (x) задана таблицей. Построим интерполяционный полином Ln (x), степень которого не больше n и выполняются условия: Ln (xi) = yi, i = 0, 1, 2, …, n. Будем искать Ln (x) в виде

,

где pi (x) – полином степени n;

, т. е. pi (x) только в одной точке отличен от нуля при i = j, а в остальных точках он обращается в нуль. Следовательно, все эти точки являются для него корнями:

;

при x = xi

;

;

подставим c в формулу pi (x), получим:

,

отсюда

Это и есть интерполяционный полином Лагранжа. По исходной таблице формула позволяет весьма просто составить внешний вид полинома.

Пример 18.1. Построить интерполяционный полином Лагранжа для функции, заданной таблично

x        
y        

 

Решение

Степень Ln (x) не выше третьей, так как функция задаётся четырьмя значениями:

.

График этой функции представляет собой кубическую параболу.

 

Пример 18.2. Построить интерполяционный полином Лагранжа для функции y = sin(π x), выбрав узлы .

Решение

Вычислим соответствующие значения функции:

.

Применяя формулу, получаем

.

 

Пример 18.3. Построить интерполяционный полином степени n ≤ 2, принимающий в точках x 0 = 1, x 1 = 3, x 2 = 5 соответственно значения y 0 = 2, y 1 = 1, y 2 = 8.

Решение

По формуле запишем:

.

Преобразовав, получим:

.

Пример 18.4. Построить интерполяционный полином Лагранжа для трёх узлов интерполяции:

x x 0 x 1 x 2
y y 0 y 1 y 2

 

x      
y      

 







Дата добавления: 2015-08-29; просмотров: 775. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия