Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 9. Предел функции в точке





Если функция в точке непрерывна, то . Т.е. для вычисления предела в функцию подставляется то значение х, к которому приближается эта переменная.

Например, .

§1 Некоторые неопределенности и правила их раскрытия
1. Неопределенность вида , - многочлены - максимальная степень числителя; - максимальная степень знаменателя. где - коэффициент при max степени числителя - коэффициент при max степени знаменателя Задача. Значение предела равно… 1) 2 2) 1 3) 0 4) Решение. Максимальные степени числителя и знаменателя совпадают (=2). Коэффициент при max степени числителя =2, в знаменателе = 1. Ответ. №1   Задача. Решение. Максимальная степень числителя =3, знаменателя = 2 (3>2). Следовательно, Ответ. .
2. Неопределенность вида   Числитель и знаменатель раскладывается на множители с использованием формул: 1)   2)   3)   4) , где - корни уравнения Задача. Решение. Разложим числитель и знаменатель на множители: 1) 2) ; . . Тогда Ответ. .
3. Неопределенность вида Если в функции есть выражение вида , то числитель и знаменатель умножается на . Если есть выражение вида - то на . Задача. Решение. Ответ. .
4. Неопределенность вида С использованием эквивалентностей , при , при , при , при , при , при , при Задача. Значение предела равно… 1) 0 2) 3) 4) 1 Решение. У функции аргумент при . Можно воспользоваться предложенной эквивалентностью Ответ. №2
5. Неопределенность вида Привести две дроби к общему знаменателю. В результате получится неопределенность вида Задача. Решение. Каждая дробь имеет степень числителя больше, чем степень знаменателя. Следовательно, каждая дробь стремится к . Ответ. -10  
6. Правило Лопиталя     Правило Лопиталя используется при неопределенностях или Задача. Решение. Ответ.
  §2 Непрерывность функции в точке  
  1. Точка разрыва I рода (скачок) - точка разрыва I рода (скачок), если   Задача. При каких значениях параметра а функция непрерывна? Решение.         Функция непрерывна, если ,   Ответ. .  
  2. Точка устранимого разрыва - точка устранимого разрыва(точка разрыва I рода), если    
  3. Точка непрерывности - точка непрерывности, если        
  4. Точка разрыва II рода - точка разрыва II рода, если хотя бы один из пределов равен   или    
             






Дата добавления: 2015-08-29; просмотров: 377. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия