Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные методы интегрирования





1. Непосредственное интегрирование
1) ,   2)   3) а) б)
2. Внесение функции под знак дифференциала
Таблица дифференциалов   а)   б)   в)
1. 2. 3. 4. 5. 6. 7. 8.     9. 10. 11. 12. 13. 14. .
       

 

3. Правило подстановки
Подстановка а)   б)
4. Интегрирование по частям
1) 2) 3) а)   б)
     

 

5. Интегрирование простейших дробей
1) 2) 3) а) б) в) .
6. Интегрирование рациональных дробей
1. Если дробь неправильна, то представить ее в виде суммы многочлена и правильной дроби (выделить целую часть).   2. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших рациональных дробей.   Дробь правильная. Представим ее в виде суммы простейших дробей: , приведем к общему знаменателю

 

3. Проинтегрировать многочлен и полученную сумму простейших дробей. ; приравняем коэффициенты при одинаковых степенях х: ; Значит:
7. Интегрирование тригонометрических функций
7.1. Необходимо преобразовать произведение тригонометрических функций в сумму или разность, пользуясь одной из следующих формул   а)
7.2. , где и - целые числа     Если m – нечетное положительное, то подстановка . Если n – нечетное положительное, то подстановка . Если - четное отрицательное, то подстановка . Если и - четные неотрицательные, то применяются формулы: ; б)    
  7.3. Универсальная подстановка , тогда ; ; ; . Если , то подстановка ; Если , то подстановка ; Если , то подстановка . в)
       

 

8. Интегрирование иррациональных функций
  8.1.     8.2.   8.3. Квадратичные иррациональности   8.4. Интегралы типа   8.5. Дифференциальный бином , где - рациональные числа, а, b – действительные числа     Приводится к интегралу от рациональной дроби подстановкой , где - наименьшее общее кратное знаменателей дробей     Сводится к интегралу от рациональной дроби подстановкой     Под радикалом выделить полный квадрат и сделать подстановку     Подстановка   Подстановка Подстановка   1-й случай а) если р – целое положительное число, то нужно раскрыть скобки по биному Ньютона и вычислить интегралы от степеней; б) если р – целое отрицательное число, то подстановка , где - наименьшее общее кратное знаменателей дробей m и n, приводит к интегралу от рациональной дроби;   2-й случай если - целое число, то применяется подстановка , где - знаменатель дроби р; 3-й случай если - целое число, то применяется подстановка , где - знаменатель дроби    

 

Задача. Первообразными функции являются Варианты ответов: 1) 2) 3) 4) Решение. Т.к. , то , тогда Ответ. №4   Задача. Множество первообразных функции имеет вид Варианты ответов: 1) 2) 3) 4) Решение. Ответ. №1   Задача. В неопределенном интеграле введена новая переменная . Тогда интеграл принимает вид Варианты ответов: 1) 2) 3) 4) Решение. Ответ. №4   Задача. Установите соответствие между интегралом и его значением 1. 2. 3. 4. Варианты ответов: а) в) с) d) е) Решение. 1) 2) 3) 4) Ответ.

 







Дата добавления: 2015-08-29; просмотров: 512. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия