Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 6. Кривые второго порядка





 

Уравнение Чертеж Фокусы Эксцентриситет Директриса Асимптота
1. Эллипс - центр - полуоси Если
Если
2. Гипербола - центр - действительная полуось, - мнимая
3. Гипербола или - центр - мнимая полуось, - действительная
4. Парабола - вершина - расстояние между фокусом и директрисой - -
5. Парабола - -
6. Парабола - -
7. Парабола - -
8. Окружность - центр - радиус - - -
9. Две пересекающиеся прямые   - - - -
10. Уравнение определяет точку - - - - -
Задача. Укажите соответствие между кривыми второго порядка и их уравнениями: 1. 2. 3. 4. Варианты ответов: А) эллипс В) гипербола С) окружность D) парабола Решение. Проанализируем каждое уравнение 1). Уравнение можно записать в виде . Это уравнение окружности. 2). Уравнение содержит переменную во второй степени, а переменную - в первой. Это уравнение параболы. 3). Поделим уравнение на 4. Тогда . Обе переменные в квадрате. В левой части – сумма; в правой – единица. Это уравнение эллипса. 4). . Обе переменные во второй степени. В левой части – разность; в правой – единица. Это уравнение гиперболы. Ответ.   Задача. Установите соответствие между кривой второго порядка и ее уравнением. 1. Парабола 2. Эллипс 3. Гипербола Варианты ответов: А) В) С) D) Е)     Решение. 1). Парабола. В уравнении одна переменная должна быть в первой степени, другая – во второй. Это уравнение (D). 2). Эллипс. Обе переменные должны быть во второй степени. В левой части – сумма; в правой – единица. Это уравнение (Е). 3). Гипербола. Обе переменные должны быть во второй степени. В левой части – разность; в правой – единица. Это уравнение (В) Ответ.   Задача. Если - центр окружности, которая проходит через точку , то уравнение этой окружности имеет вид… Варианты ответов: 1) 2) 3) 4) Решение. Так как - центр, то уравнение может быть №3 или №4. Найдем радиус – это расстояние АС. . Итак, , тогда уравнение №3. Ответ. №3.   Задача. Если уравнение гиперболы имеет вид , то длина ее действительной полуоси равна… Варианты ответов: 1) 3 2) 16 3) 9 4) 4 Решение. Действительная полуось берется из положительного слагаемого . Тогда , . Ответ. №1. Задача. Если уравнение окружности имеет вид , то его центром С и радиусом r являются… Варианты ответов: 1) , 2) , 3) , 4) , Решение. Уравнение можно записать в виде . Тогда центр , радиус . Ответ. №2.   Задача. Радиус окружности, заданной уравнением , равен … Варианты ответов: 1) 3 2) -1 3) 4 4) 1 Решение. ; . Тогда центр , радиус . Ответ. №4.






Дата добавления: 2015-08-29; просмотров: 432. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия