Глава 6. Кривые второго порядка
Уравнение
| Чертеж
| Фокусы
| Эксцентриситет
| Директриса
| Асимптота
| 1. Эллипс
- центр
- полуоси
|
| Если
|
|
| –
| Если
|
|
| –
| 2. Гипербола
- центр
- действительная полуось,
- мнимая
|
|
|
|
|
| 3. Гипербола
или
- центр
- мнимая полуось,
- действительная
|
|
|
|
|
| 4. Парабола
- вершина
- расстояние между фокусом и директрисой
|
|
| -
|
| -
| 5. Парабола
|
|
| -
|
| -
| 6. Парабола
|
|
| -
|
| -
| 7. Парабола
|
|
| -
|
| -
| 8. Окружность
- центр
- радиус
|
| -
|
| -
| -
| 9. Две пересекающиеся прямые
|
| -
| -
| -
| -
| 10. Уравнение
определяет точку
| -
| -
| -
| -
| -
| Задача.
Укажите соответствие между кривыми второго порядка и их уравнениями:
1. 2. 3. 4.
Варианты ответов: А) эллипс В) гипербола С) окружность D) парабола
Решение.
Проанализируем каждое уравнение
1). Уравнение можно записать в виде . Это уравнение окружности.
2). Уравнение содержит переменную во второй степени, а переменную - в первой. Это уравнение параболы.
3). Поделим уравнение на 4. Тогда . Обе переменные в квадрате. В левой части – сумма; в правой – единица. Это уравнение эллипса.
4). . Обе переменные во второй степени. В левой части – разность; в правой – единица. Это уравнение гиперболы.
Ответ.
Задача.
Установите соответствие между кривой второго порядка и ее уравнением.
1. Парабола 2. Эллипс 3. Гипербола
Варианты ответов: А) В) С) D) Е)
Решение.
1). Парабола. В уравнении одна переменная должна быть в первой степени, другая – во второй. Это уравнение (D).
2). Эллипс. Обе переменные должны быть во второй степени. В левой части – сумма; в правой – единица. Это уравнение (Е).
3). Гипербола. Обе переменные должны быть во второй степени. В левой части – разность; в правой – единица. Это уравнение (В)
Ответ.
Задача.
Если - центр окружности, которая проходит через точку , то уравнение этой окружности имеет вид…
Варианты ответов: 1) 2)
3) 4)
Решение.
Так как - центр, то уравнение может быть №3 или №4. Найдем радиус – это расстояние АС.
. Итак, , тогда уравнение №3.
Ответ. №3.
Задача.
Если уравнение гиперболы имеет вид , то длина ее действительной полуоси равна…
Варианты ответов: 1) 3 2) 16 3) 9 4) 4
Решение.
Действительная полуось берется из положительного слагаемого . Тогда , .
Ответ. №1.
Задача.
Если уравнение окружности имеет вид , то его центром С и радиусом r являются…
Варианты ответов: 1) , 2) , 3) , 4) ,
Решение.
Уравнение можно записать в виде . Тогда центр , радиус .
Ответ. №2.
Задача.
Радиус окружности, заданной уравнением , равен …
Варианты ответов: 1) 3 2) -1 3) 4 4) 1
Решение.
; . Тогда центр , радиус .
Ответ. №4.
|
Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...
|
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
|
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
|
Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...
Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...
Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...
|
ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ
Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...
Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки.
В основе кишечного шва лежит принцип футлярного строения кишечной стенки...
Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка:
а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...
|
|