Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 13. Определенный интеграл





§1 Вычисление определенного интеграла
1. Формула Ньютона-Лейбница Задача. Вычислить интеграл . Решение. . Ответ. 9.   Задача. Вычислить интеграл . Решение. Ответ. .
2. Замена переменной в определенном интеграле Задача. Вычислить интеграл . Решение. . Ответ. .

 

 

3. Формула интегрирования по частям Задача. Вычислить интеграл . Решение. . Ответ. .  
4. Интегрирование четных и нечетных функций в симметричных пределах  
Задача. Вычислить интеграл . Решение. . Ответ. 0.   Задача. Вычислить интеграл . Решение. . Ответ. .    
§2 Несобственные интегралы  
Несобственные интегралы I рода  
Если функция непрерывна на , то (*) Если функция непрерывна на , то (**) Если функция непрерывна на , то (***) Если пределы (*), (**) существуют и конечны, то несобственный интеграл – сходящийся, если эти пределы не существуют или бесконечны - расходящийся. Интеграл сходится – если сходится каждый из двух интегралов в равенстве (***). Задача. Вычислить несобственный интеграл или установить его расходимость: . Решение. , интеграл сходится.      
Несобственные интегралы II рода  
Если - непрерывна на и имеет бесконечный разрыв при , то . (*) Если функция терпит бесконечный разрыв в точке , то . (**) Если терпит бесконечный разрыв внутри отрезка , т.е. в точке , , то . (***) Если пределы (*), (**) существуют и конечны, то несобственный интеграл – сходящийся, если эти пределы не существуют или бесконечны - расходящийся. Интеграл сходится – если сходится каждый из двух интегралов в равенстве (***). Задача. Вычислить несобственный интеграл или установить его расходимость: Решение. , интеграл расходится.  
§3 Геометрические приложения определенного интеграла  
Площадь плоской фигуры в декартовой системе координат Площадь плоской фигуры в полярной системе координат  
,   - непрерывна на ,  
Задача. Площадь фигуры, ограниченной параболой и прямой , вычисляется с помощью интеграла… Варианты ответов: 1) 2) 3) 4) Решение. , следовательно, . На отрезке график функции расположен выше графика функции , поэтому Ответ. №3.  
Длина дуги плоской кривой в декартовой системе координат , Задача. Найти длину дуги кривой от до . Решение. Так как , то ; . . . Ответ. .  
    ,  
Длина дуги плоской кривой в полярной системе координат       ,    
Длина дуги плоской кривой в параметрическом виде на плоскости        
Длина дуги плоской кривой в параметрическом виде в пространстве          
    Объем Площадь поверхности
Объем и площадь поверхности тела вращения   Кривая , вращается вокруг оси   Кривая , вращается вокруг оси        
§4 Применение определенного интеграла к решению некоторых задач физики
Вычисление работы Вычисление работы переменной силы , при перемещении точки вдоль оси из положения в положение  
Вычисление пути Путь пройденный телом за промежуток времени от до со скоростью
                             

 







Дата добавления: 2015-08-29; просмотров: 470. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия