Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ряды в нормированных и банаховых пространствах





Из элементов нормированного пространства составим формальный ряд

(3.3)

и назовем частичной суммой ряда (3.3) сумму первых элементов, т.е. выражение

.

Определение 3. Ряд (3.3) называется сходящимся, если последовательность частичных сумм. При этом элемент

называется суммой ряда и обозначается

.

Определение 4. Если сходится числовой ряд, составленный из норм

, (3.4)

то ряд (3.3) называется абсолютно сходящимся.

В курсе математического анализа для числовых рядов доказывается, что всякий абсолютно сходящийся числовой ряд сходится.

Как следует из следующей теоремы, это свойство эквивалентно полноте.

Теорема 2. Нормированное пространство является банаховым тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.

Доказательство необходимости. Пусть - банахово пространство и числовой ряд (3.4) сходится. Докажем, что частичные суммы образуют фундаментальную последовательность. При имеем

, когда .

Таким образом, последовательность частичных сумм фундаментальна и поэтому сходится в силу полноты пространства , т.е. сходится ряд (3.3). Далее, переходя в неравенстве

к пределу, получим

, (3.5)

которое является обобщением неравенства треугольника для норм.

Доказательство достаточности. Пусть в нормированном пространстве любой абсолютно сходящийся ряд сходится. Возьмем фундаментальную последовательность . В силу фундаментальности, найдется такой номер , что

, .

После того, как выбраны , найдем так, чтобы

, .

Продолжая этот процесс, построим подпоследовательность такую, что

, . (3.6)

А теперь составим ряд

.

Этот ряд сходится абсолютно, согласно оценке (3.6), тогда он сходится по условию теоремы. С другой стороны, частичная сумма последнего ряда

равна элементу . Таким образом, сходится подпоследовательность , а вместе с ней и исходная фундаментальная последовательность . Теорема полностью доказана.

 







Дата добавления: 2015-08-29; просмотров: 1911. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия