Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Фактор - пространства нормированных пространств





Пусть - нормированное пространство, - замкнутое подпространство. Рассмотрим фактор-пространство . В силу замкнутости класс - замкнутое множество в .

Если для положить

, (3.7)

то превратится в нормированное пространство. Проверим справедливость аксиом нормированного пространства.

Если , то в качестве можно взять нулевой элемент пространства и поэтому . Обратно, если , то согласно (3.7) и по свойству нижней грани существует последовательность , такая что . И поскольку класс - замкнут, то содержит предельную точку: и тем самым является нулевым элементом фактор-пространства .

Проверим однородность нормы, рассматривая случай . Имеем

.

Когда пробегает класс , элемент пробегает класс , откуда следует, что

.

Теперь докажем неравенство треугольника. Для произвольных , имеем , поэтому

.

Переходя в правой части к точным нижним граням, получим неравенство треугольника.

Далее докажем, что если - полное пространство, то и фактор-пространство - полно. Вначале заметим, что согласно (3.7) для каждого найдется такой элемент , что

. (3.8)

А теперь возьмем фундаментальную последовательность в пространстве . Переходя, если нужно к подпоследовательности, можно считать, что ряд

сходится. Способ построения указанной подпоследовательности приведен в теореме 2. К последовательности добавим еще - нулевой элемент пространства . Выберем () так, что

.

Тогда ряд сходится и по теореме 2 в силу полноты пространства сходится такжеряд . Положим и обозначим через , содержащий . Поскольку при каждом справедливо включение , то

, при ,

т.е. . Таким образом доказана теорема.

Теорема 5. Фактор – пространство банахова пространства по любому его подпространству есть банахово пространство.

 







Дата добавления: 2015-08-29; просмотров: 1143. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия