Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приближение элементами подпространства





Определение 18. Пусть - подпространство нормированного пространства . Определим расстояние от точки до подпространства по формуле

. (2.13) Имеет место предложение.

Предложение 19. Если , то , если же , то .

Доказательство. Если , то, приняв , получим, что ,т.е.

Пусть теперь . Допустим противное, что . Тогда по определению для любого натурального числа найдется такой элемент , что . Отсюда , когда . Вследствие замкнутости также , но по условию . Полученное противоречие и доказывает предложение.

Число характеризует наилучшую аппроксимацию элемента с помощью элементов подпространства . Имеет место теорема.

Теорема 3. Пусть - конечномерное подпространство нормированного пространства . Для любого существует (возможно, не единственный) такой элемент , что

.

Доказательство. Предполагаем, что , тогда . Пусть - базис на и - разложение по базису. Введем на вторую норму:

.

С этой нормой пространство будем отождествлять с пространством , как и при доказательстве теоремы 2. Вследствие конечномерности обе нормы эквивалентны: т.е. найдутся постоянные такие, что

.

Рассмотрим в функцию . Она непрерывна на , поскольку для любых

.

Покажем, что может достигаться только в шаре

, где .

В самом деле, если , то

.

Далее, шар является в замкнутым и ограниченным множеством, а функция - непрерывна. Поэтому найдется - наилучший элемент приближения элементами из , на котором достигается наименьшее значение . Теорема доказана.

Определение 19. Нормированное пространство называется строго нормированным, если в нем равенство возможно только при , где .

Теорема 4. В строго нормированном пространстве для каждого элемента и каждого подпространства может существовать не более одного наилучшего элемента приближения элементами из .

Доказательство. Допустим, что в строго нормированном пространстве найдутся элемент , подпространство и элементы такие, что

.

Если , то по первой аксиоме нормы . Далее полагая , имеем

.

 

Следовательно

.

Но тогда

.

В силу строгой нормированности существует такое, что . Если , то отсюда

,

что невозможно, поскольку . Следовательно, , но тогда . Теорема доказана.







Дата добавления: 2015-08-29; просмотров: 1255. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия