Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Компактность и конечномерность





В пособии [12] подробно изложены компактные пространства и множества в метрических пространствах. Здесь рассмотрим один аспект, характерный именно для линейных нормированных пространств. В начале приведем нужные определения.

Определение 1. Линейное нормированное пространство называется компактным, если у любой последовательности точек этого пространства существует сходящаяся подпоследовательность.

Определение 2. Линейное нормированное пространство называется относительно компактным, если у любой последовательности точек этого пространства существует фундаментальная подпоследовательность.

Определение 3. Множество в линейном нормированном пространство называется относительно компактным, если у любой последовательности точек этого множества существует фундаментальная подпоследовательность.

Определение 3. Неограниченное множество элементов нормированного пространства называется локально относительно компактным, если пересечение с любым замкнутым шаром в относительно компактно.

Теорема 1. (Ф.Рисс). Для того чтобы линейное многообразие нормированного пространства было локально относительно компактным, необходимо и достаточно, чтобы было конечномерным.

Доказательство необходимости. Пусть локально компактно. Рассмотрим точку и произвольный замкнутый шар с центром в этой точке . Пересечение относительно компактно в .

Предположим, что утверждение теоремыневерно, т.е. бесконечномерно.

Возьмем любой элемент с и положим . Обозначим через линейную оболочку элемента , т.е. множество элементов вида .

По лемме Рисса существует с такой, что и, в частности, . Положим . Тогда и, кроме того,

.

Продолжим эти построения. Если и, соответственно , , уже построены, то через обозначим линейную оболочку элементов .

Линейное многообразие замкнуто, поскольку конечномерно, т.е. является подпространством. Так как бесконечномерно, то . Снова пользуясь леммой Рисса, найдем элемент с такой, что . В частности, при любом . Положим . Тогда и выполнено неравенство

, . (2.15)

Продолжая этот процесс, получим последовательность , которая не содержит фундаментальной последовательности. А это противоречит относительной компактности . Необходимость доказана.

Доказательство достаточности. Пусть конечномерно. Возьмем в произвольный замкнутый шар . Рассмотрим в ограниченном множестве произвольную последовательность . Разложим элементы этой последовательности по базису , . На основании предложения 15 из 2-ой главы заключаем, что при каждом числовая последовательность ограничена. Поэтому по известной теореме Больцано - Вейерштрасса существует последовательность натуральных чисел такая, что

, .

Тогда в силу предложения16 из 2-ой главы

.

Это и означает, что относительно компактно. Теорема полностью доказана.

Следствие 1. Для того, чтобы нормированное пространство было локально компактным, необходимо и достаточно, чтобы оно было конечномерным.

Доказательство получается из теоремы, если взять .

Следствие 2. В бесконечномерном нормированном пространстве любое относительно компактное множество нигде не плотно.

Доказательство. Пусть - относительно компактное множество в бесконечномерном пространстве . Допустим, что утверждение следствия неверно. Тогда найдется шар , который содержится в замыкании множества : . Но тогда . Поскольку - относительно компактно, то относительно компактными будут также множества и . Из относительной компактности по следствию 1 получаем, что - конечномерно. Полученное противоречие и доказывает следствие.

 







Дата добавления: 2015-08-29; просмотров: 1180. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия