Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Остаток ряда и его оценка





Рассмотрим сходящийся числовой ряд

(23)

Вычисление суммы ряда S = обычно технически очень сложно. Поэтому в качестве S берут SSn. Точность этого равенства возрастает с увеличением n.

Определение 7. Если числовой ряд сходится, то разность Rn = S - Sn называется n -м остатком ряда.

Таким образом, Rn представляет собой сходящийся числовой ряд:

Rn = un+1+un+2+….

Заметим, что Rn= (S-Sn)=S-S=0.

Абсолютная погрешность при замене суммы ряда S его частичной суммой Sn равна | Rn|=|S-Sn|. Таким образом, если требуется найти сумму ряда с точностью до E >0, то надо взять сумму такого числа n первых членов ряда, чтобы выполнялось условие | Rn|<E. Однако в общем случае находить точно Rn не удаётся.

Теорема 11. (Об оценке остатка знакочередующегося числового ряда)

Если знакочередующийся числовой ряд сходится по признаку Лейбница, то его n -й остаток по абсолютной величине не превосходит модуля (n +1)-го члена ряда.

Доказательство. Пусть ряд u1-u2+u3-u4+…+(-1)n-1.un+… сходится по признаку Лейбница. Тогда n -й остаток ряда Rn=±(un+1-un+2+un+3-…) сам является суммой знакочередующегося числового ряда и по теореме Лейбница |Rn|≤|un+1 |. Теорема доказана.

Пример.

Вычислить с точностью до 0,01 сумму ряда

Очевидно, ряд сходится по признаку Лейбница. u1 = =1; u2 =
≈0,166; u3 = ≈0,008<0,01. Поэтому S ≈1-0,166≈0,84.

 

 

46 Понятие функционального ряда. Степенной ряд. Теорема Абеля.

 

О: Функциональный ряд (ф.р.) представляет собой ряд , его члены — это функции от

Числовым функциональный ряд можно назвать в том случае, когда является фиксированным. Область сходимости ф.р. есть множество значений , для которых он сходится.

В области сходимости ф.р. .

Пример: функциональный ряд . Определить область сходимости.

Поскольку его члены являются положительными, то для выявления области сходимости применим признак Даламбера:

 

 

если то ряд сходится.

Существенный частный случай ф.р. — степенный ряд.

О: Степенный ряд (с.р.) есть ф.р., который имеет следующий вид

 

(30.1)

 

Если , то ряд по степеням можно записать так:

 

(30.2)

 

Для определения области сходимости с.р., представим доказательство теоремы Абеля.

Т. (Абеля): В случае, когда степенной ряд (30.2) сходится при можно заключить, что он абсолютно сходится При расходимости ряда (30.2) в т. он расходится .

Предположим, что ряд сходится, соответственно

Учитывая то, что функция, обладающая пределом, является ограниченной, можно обозначить

 

 

Представим ряд (30.2) в следующем виде

 

.

 

Для ряда, составленного из абсолютных величин его членов

 

(30.3)

 

запишем , при этом геометрическая прогрессия сходится при Получается, что, если в соответствии с первым признаком сравнения ряд (30.3) сходится, то по признаку абсолютной сходимости ряд (30.2) сходится абсолютно.

Далее предположим, что при ряд (30.2) расходится. Допустим, что смысл теремы противоположен:

 

,

 

при нем ряд (30.2) сходится. Однако в соответствии с представленным ранее доказательством ряд (30.2) предполагает сходимость в т. . Данное противоречие доказывает теорему.

 

48 Применение рядов к интегрированию функций.

 







Дата добавления: 2015-08-30; просмотров: 5025. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия