Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема об изменении момента количества движения системы





Моментом количества движения точки относительно некоторого центра называется векторная величина , определяемая равенством

. (3.29)

Здесь выражение в квадратных скобках − векторное произведение радиус-вектора на вектор количества движения движущейся точки . Получается, что вектор , проходящий через центр , направлен перпендикулярно плоскости, образованной векторами , . Определение (3.29) аналогично определению момента силы (1.4).

Вычислим от равенства (3.29) производную по времени:

В полученном выражении , как векторное произведение двух параллельных векторов. Согласно (1.4) справедливо равенство . В результате, получается

. (3.30)

Доказана теорема моментов относительно центра: производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра.

Определим момент количества движения (кинетический момент) твердого тела, вращающегося вокруг неподвижной оси с угловой скоростью . Считаем, что тело состоит из материальных точек. Выберем произвольную точку K, отстоящей от оси на расстоянии . Момент количества движения точки K относительно оси будет . Кинетический момент вращающегося тела относительно оси : . Величина, стоящая в скобках, представляет собой момент инерции тела относительно оси (3.14), следовательно

. (3.31)

Кинетический момент твердого тела относительно оси вращения равен произведению момента инерции тела относительно данной оси на угловую скорость тела.

Докажем теорему моментов для механической системы. Выражение (3.30) для – ой точки системы можно записать так:

где и – равнодействующие всех внешних и внутренних сил, действующих на точку. Для механической системы

Последняя сумма по свойству внутренних сил равна нулю. Учитывая, что кинетический момент системы относительно центра , получим

. (3.32)

Производная по времени от кинетического момента механической системы относительно неподвижного центра равна сумме моментов внешних сил относительно того же центра.

Проектируя обе части (3.32) на ось , получим

. (3.33)

Для вращающегося твердого тела выполняется равенство (3.31), поэтому выражение (3.33) можно представить в другом виде:

или

. (3.34)

Уравнение (3.34) называется дифференциальным уравнением вращательного движения твердого тела. Произведение момента инерции твердого тела относительно оси на угловое ускорение () тела, вращающегося вокруг оси , равно сумме моментов внешних сил относительно той же оси .

 







Дата добавления: 2015-09-19; просмотров: 479. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия