Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механической системы





Рассмотрим механическую систему, состоящую из материальных точек. Выберем произвольную точку системы. На нее действуют внешние и внутренние силы. Равнодействующие этих сил и (рис. 3.2).

Второй закон Ньютона для всех точек системы записывается в следующем виде: . Учитывая свойство внутренних сил (3.6), получим дифференциальное уравнение движения механической системы в векторной форме:

или . (3.11)

В проекциях на оси координат это уравнение будет иметь вид

, , . (3.12)

 

Теорема о движении центра масс. Дважды продифференцировав по времени уравнение (3.10), находим

или . Учитывая (3.11), получим

. (3.13)

Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил. По внешнему виду это уравнение напоминает уравнение движения точки. Отличие состоит в том, что материальной точкой центр масс не является. Поэтому теорема о движении центра масс системы формулируется так: центр масс механической системы движется как материальная точка, к которой приложены действующие на систему все внешние силы, а масса точки равна массе всей системы.

Из уравнения (3.13) следует, что движение центра масс возможно только при наличии внешних сил, внутренние же силы не могут изменить положения центра масс. Внутренние силы иногда являются причиной появления внешних сил. Например, внутренняя сила, приводящая в движение ведущее колесо автомобиля, вызывает действие на колесо внешней силы сцепления с дорогой, которая «толкает» автомобиль. Если дорогу принять за абсолютно гладкую плоскость, то сила сцепления равна нулю, и колесо будет двигаться таким образом, что его центр масс останется неподвижным (явление пробуксовки).

Отметим, что уравнение (3.13) является также дифференциальным уравнением поступательного движения твердого тела. Действительно, при поступательном движении ускорения всех точек в каждый момент времени одинаковы и, следовательно, равны ускорению центра масс тела, которое определяется теоремой о движении центра масс.

Рассмотрим частные случаи.

а) Пусть сумма внешних сил, действующих на систему, равна нулю: Тогда из уравнения (3.13) следует, что и . Следовательно,при отсутствии внешних сил центр масс системы движется прямолинейно и равномерно.

б) Если при отсутствии внешних сил в начальный момент времени центр масс был в покое, то он и останется в покое:

, .







Дата добавления: 2015-09-19; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия