Сложное движение точки
Рассмотрим движение точки одновременно по отношению к двум системам отсчета, из которых одна система считается основной или условно неподвижной, а другая система некоторым образом движется по отношению к первой (рис. 2.16). Каждая из этих систем отсчета связана, конечно, с определенным телом, которое на чертеже, как правило, не показывают. Введем следующие определения. Движение, совершаемое точкой по отношению к подвижной системе отсчета , называется относительным. Например, движение падающего мячика с полки в движущемся поезде. В этом случае оси связывают с вагоном. Движение подвижной системы координат относительно неподвижной называют переносным движением (в том же примере, движение вагона поезда относительно условно неподвижной Земли). Переносной скоростью и переносным ускорением точки М в данный момент времени называют векторы, равные соответственно скорости и ускорению той точки т подвижной системы координат, с которой совпадает в данный момент движущаяся точка М. Для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить положение точки т тела, неизменно связанной с подвижной системой координат, где находится в остановленный момент точка М, и вычислить скорость и ускорение точки т тела, совершающего переносное движение относительно неподвижной системы координат. Движение точки М относительно неподвижной системы координат называют абсолютным или сложным. Соответственно, траекторию, скорость и ускорение относительно неподвижной системы координат называют абсолютными. Абсолютная скорость точки определяется по теореме о сложении скоростей, согласно которой абсолютная скорость точки, совершающей сложное движение, равна векторной сумме переносной и относительной скоростей: (2.32) Абсолютное ускорение точки определяется по теореме Кориолиса, согласно которой абсолютное ускорение точки, совершающей сложное движение, равно геометрической сумме переносного, относительного и Кориолисова ускорений: . (2.33) Кориолисово ускорение характеризует изменение относительной скорости точки при переносном движении и изменение переносной скорости точки при ее относительном движении. Оно равно удвоенному векторному произведению , (2.34) где - вектор угловой скорости переносного движения, - вектор относительной скорости точки. Направление вектора Кориолисова ускорения определяется по правилу векторного произведения: Кориолисово ускорение будет направлено, перпендикулярно плоскости, в которой лежат векторы и (рис. 2.17), в ту сторону, откуда кратчайший поворот от вектора к вектору видится происходящим против хода часовой стрелки. Модуль Кориолисова ускорения равен . Кориолисово ускорение равно нулю в трех случаях: переносное движение тела является поступательным (), относительная скорость точки в данный момент времени равна нулю (), векторы переносной угловой скорости и вектор относительной скорости параллельны ().
|