Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Побудова лекальних кривих





Лекальними називаються криві, які креслять за допомогою лекал за попередньо знайденими окремими точками.

До лекальних належать лінії другого порядку – еліпс, парабола, гіпербола, а також інші закономірні і довільні лінії.

5.2.1. Побудова еліпса за двома його осями

Еліпс, який задається великою та малою осями, є геометричним місцем вершин прямих кутів прямокутних трикутників, гіпотенузи яких по довжині дорівнюють різниці радіусів двох концентричних кіл, побудованих на цих осях як на діаметрах, а катети відповідно паралельні цим осям.

Задано осі еліпса – велику АВ і малу СD. З центра еліпса (рис. 5.4) описують два кола, діаметри яких дорівнюють великій і малій осям еліпса. Коло більшого діаметру ділять на однакову кількість рівних частин, наприклад на дванадцять. З'єднують точки поділу з центром О, розділивши таким чином коло меншого діаметру на таку ж кількість частин.

З точок поділу кола більшого діаметру (за винятком точок 3, 6, 9, 12) проводять прямі, паралельні малій осі еліпса СD, а з точок поділу кола меншого діаметру (за винятком точок С і D) - паралельні великій осі АВ. Перетин відповідних пар цих прямих визначає ряд точок, з’єднавши які плавною кривою, одержують шуканий еліпс.

 
Рис. 5.4. Побудова еліпсу Рис. 5.5. Побудова параболи

5.2.2. Побудова параболи за вершиною О, віссю ОА і довільною точкою В, що лежить на обрисі параболи.

Будують прямокутник ОDВА, вершинами якого є задані точки О і В (рис. 5.5). Відрізки ОD і ділять на однакову кількість рівних частин, наприклад на шість. Точки поділу нумерують у напрямах, показаних стрілками. Вершину О сполучають з точками 1, 2, 3, 4, 5, а через точки 11, 21, 31, 41, 51 проводять прямі, паралельні осі симетрії ОА. Перетин однойменних прямих дає точки, які належать параболі.

5.2.3. Побудова гіперболи за заданою вершиною А і точкою Р, що лежить на обрисі гіперболи.

З точки Р (рис. 5.6) проводять перпендикуляр до дійсної осі гіперболи АВ і будують прямокутник ABРN. Сторони прямокутника PN і PB ділять на однакову кількість рівних частин, наприклад на чотири. Відкладають відрізок ОА=АВ. Проводять два пучка променів: з точки А до точок поділу 1, 2, 3 і з точки О до точок поділу 11, 21, 31. На взаємних перетинах цих променів отримують шукані точки А1, А2, А3 та з’єднують їх за допомогою лекала.

Рис. 5.6. Побудова гіперболи Рис. 5.7. Побудова спіралі Архімеда

5.2.4. Побудова спіралі Архімеда за заданим центром О і кроком спіралі а.

З центра О (рис. 5.7) описують коло радіусом R=а. Відрізок ОА та коло ділять на однакову кількість рівних частин, наприклад на вісім. Точки шуканої спіралі Архімеда дістають в перетинах концентричних кіл, проведених із центра О радіусами О1, О2, О3, О4,… з променями О11, О21, О31,…, проведеними через відповідні точки поділу кола. Одержані точки спіралі А1, А2, А3,… сполучають під лекало.

5.2.5. Побудова синусоїди.

Коло діаметром d та відрізок АВ, довжина якого дорівнює довжині кола pd, ділять на однакову кількість рівних частин, у даному разі – на дванадцять (рис. 5.8). Після цього через точки поділу кола проводять прямі, паралельні відрізку АВ, до перетину їх з відповідними прямими, проведеними з точок 11…111 перпендикулярно відрізку АВ. Одержані точки синусоїди А1…А11 сполучають під лекало.

Рис. 5.8. Побудова синусоїди

5.2.6. Побудова циклоїди за заданим діаметром твірного кола.

На горизонтальній прямій ОО8 (рис. 5.9), яка проходить через центр О твірного кола, відкладають його довжину, розраховану за формулою L = pd, де d – діаметр кола. Цей відрізок і твірне коло ділять на однакову кількість рівних частин, наприклад на вісім. Із точок 1, 2, 3,… поділу кола проводять горизонтальні прямі. З точок О1, О2, О3,…, як із центрів,

Рис. 5.9. Побудова циклоїди

проводять дуги радіусом d/2 до перетину з відповідною горизонтальною лінією і дістають точки А1, А2, А3,…, що належать циклоїді. Ці точки спочатку сполучають від руки на око плавною лінією, а потім за допомогою лекала.

Нормаль і дотичну до циклоїди в точці А3 будують так. Визначають положення твірного кола, за яким точка А прийде в точку А3. Через центр кола О3 проводять вертикальний діаметр ВС. Пряма СА3 буде нормаллю п, а ВА3 – дотичною t до циклоїди в точці А3.

 







Дата добавления: 2015-09-15; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия