Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рекуррентные соотношения. Возвратные последовательности




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рекуррентным соотношением называется соотношение вида , которое позволяет вычислить все члены последовательности , если заданы ее первые k членов.

Пример 2.11. Формула задает арифметическую прогрессию.

Последовательность называется возвратной, если для всех n и некоторого k выполняется где pi = const.

Пример 2.12. Геометрическая прогрессия – это возвратная последовательность, так как . Следовательно, выполняется

Многочлен называется характеристическим для возвратной последовательности.

Множество всех последовательностей, удовлетворяющих данному рекуррентному соотношению, называется общим решением.

Описание общего решения имеет аналоги с описанием решения обыкновенного дифференциального уравнения с постоянными коэффициентами. Пусть l – корень характеристического уравнения. Тогда общее решение рекуррентного соотношения можно найти следующим образом:

1. если li – корень кратности 1 (i=1,…,k), то общее решение имеет вид где ci = const (i=1,…,k).

2. если li – корень кратности ri (i=1,…,k), то общее решение имеет вид , где – произвольные константы (i=1,…,n, j=1,…,ri).

Зная общее решение рекуррентного соотношения, по начальным условиям можно найти неопределенные постоянные и тем самым получить частное решение рекуррентного уравнения с данными начальными условиями.

Пример 2.13. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению

Составим характеристический многочлен

Для нахождения корней сгруппируем слагаемые .

Составим характеристическое уравнение Его корнями являются числа . Следовательно, общее решение рекуррентного соотношения имеет вид: . Используя начальные условия, получим систему:

решая которую находим с1=1, с2= 1, с3=1. Таким образом, .







Дата добавления: 2015-09-18; просмотров: 759. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.016 сек.) русская версия | украинская версия