Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отношения на множествах





Бинарным отношением R на множествах А и В называется любое подмножество декартова произведения множеств А и В.

Если элементы x и y множеств А и В находятся в отношении R, то пишут (x,yR или xRy. Если А = В, то R называется бинарным отношением на А.

Бинарное отношение можно задать указанием всех элементов, входящих в соотношение, или графически. Основу графического представления бинарного отношения составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, а по второй – другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

Пример 1.2 Рассмотрим множества A ={1,2,3,4,5,6}, B ={1,2,3}. Определим на этих множествах отношение R Í A´B.

R ={(x,y) | x делится на y }.

R можно представить графически следующим образом:

A
B

Свяжем с каждым бинарным отношением R между множествами A и B два множества – область определения dR и множество значений rR. Они определяются следующим образом:

dR ={ x | (x,yR для некоторого y },

rR ={ y | (x,yR для некоторого x }.

Пример 1.3 Пусть на множестве A ={1,2,3,4,5} задано отношение R: R ={(x,y) | остаток от деления y на x равен 1}.

Тогда R ={(5,1), (4,1), (3,1), (2,1), (2,3), (2,5), (3,4), (4,5)},

dR ={2,3,4,5}, rR ={1,3,4,5}.

Пусть имеются множества A, B, C и отношения RÍA´B, PÍB´C. Определим отношение SÍA´C следующим образом: оно действует из A в B посредством R, а затем из B в C посредством P. Такое отношение называется составным и обозначается S=P◦R.

S ={(x,y) | $ z Î B, для которого выполнено (x,z) ÎR, (z,y) ÎP }.

R
P
S

Пример 1.4 Пусть A ={1,2,3,4}, на множестве A определим два отношения: R ={(x,y) | 2x £ y } и P ={(x,y) | x+3y делится на 2}. Найдем графические представления отношений R, P, S = P◦R.

Найдем области определения и области значений для всех отношений.

dR ={1,2}, rR ={2,3,4}, dP ={1,2,3,4}, rP ={1,2,3,4}, dS ={1,2}, rS ={1,2,3,4}.

Бинарное отношение R на множестве А называется рефлексивным, если для всякого выполняется .

Бинарное отношение R на множестве А называется симметричным, если из того, что выполняется xRy следует выполнение yRx.

Бинарное отношение R на множестве А называется антисимметричным, если из выполнения xRy и yRx следует, что x=y.

Бинарное отношение R на множестве А называется транзитивным, если из выполнения xRy и yRz следует выполнение xRz.

Рефлексивное, симметричное и транзитивное отношение R на множестве A называется отношением эквивалентности.

Рефлексивное, антисимметричное и транзитивное отношение R на множестве А называется частичным порядком.

Пример 1.5. Определим отношение R на множестве натуральных чисел следующим образом: (a+2b делится на 3).

Это отношение является рефлексивным, т.к.

Отношение R симметрично.

. Для того, чтобы проверить выполнение bRa, необходимо показать, что

,

выполнено.

Отношение R не является антисимметричным, т.к. 6 R 3, 3 R 6, но .

Проверим, что R – транзитивно.
,

. Для того, чтобы проверить выполнение aRc, необходимо показать, что .

aRc выполнено.







Дата добавления: 2015-09-18; просмотров: 777. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия