Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Минимизация конечных автоматов





Два автомата называются эквивалентными, если они для любой последовательности символов из входного алфавита X выдают одинаковую последовательность символов из выходного алфавита Y. Переход от автомата M к эквивалентному автомату называется эквивалентным преобразованием автомата M. Можно ставить много задач о поиске автоматов, эквивалентных данному и обладающих заданными свойствами. Наиболее изученной является задача о минимизации числа состояний автомата: среди всех автоматов, эквивалентных автомату M, найти автомат с наименьшим числом состояний (минимальный автомат).

Пусть имеется автомат M=(Q, X, Y, d, l). Рассмотрим алгоритм Мили поиска минимального автомата. На каждом шаге алгоритма будем строить некоторое разбиение множества состояний Q на классы, причем разбиение на каждом шаге алгоритма будет получаться расщеплением некоторых классов предыдущего разбиения.

Шаг 1. Два состояния q и ; относим в один класс C1j, если для каждого символа входного алфавита совпадают выходные символы для этих состояний, т.е. l(q, x)=l(q¢,x).

Шаг i+1. Два состояния q и ; из одного класса Cij относим в один класс Ci+1,j, если для каждого символа входного алфавита осуществляется переход из состояний q и ; в состояния, принадлежащие одному и тому же классу Cis, т.е. d(q, x) и d(q¢,x) принадлежат одному и тому же классу. Если (i+1)-ый шаг не изменяет разбиения, то алгоритм заканчивается. Каждый класс соответствует состоянию минимального автомата.

Пример 5.4. Построим минимальный автомат для автомата, заданного следующей таблицей переходов.

     
  3,0 2,1
  1,1 6,0
  5,0 2,1
  5,1 6,0
  5,0 4,1
  2,0 1,1

 

Шаг 1. Разбиваем множество состояний на два класса по выходным символам:

1, 3, 5, 6 и 2, 4.

Шаг 2. Рассмотрим переходы в новые состояния для класса 1, 3, 5, 6 при входном символе 0:

1, 3, 5, 6 3, 5, 5, 2.

Состояния 3 и 5 принадлежат одному классу, а состояние 2 – другому. Следовательно, делаем разбиение класса 1, 3, 5, 6 на два новых класса: 1, 3, 5 и 6. После этого шага алгоритма имеем три класса: 1, 3, 5; 6 и 2, 4.

Шаг 3. Рассмотрим переходы в новые состояния для класса 1, 3, 5 при входном символе 1: 1, 3, 5 2, 2, 4. Так как состояния 2 и 4 находятся в одном классе, то нового разбиения на этом шаге не получим.

Шаг 4. Рассмотрим переходы в новые состояния для класса 2, 4 при входном символе 0: 2, 4 1, 5. Так как состояния 1 и 5 находятся в одном классе, то нового разбиения на этом шаге не получим.

Шаг 5. Рассмотрим переходы в новые состояния для класса 2, 4 при входном символе 1: 2, 4 6, 6. Нового разбиения на этом шаге не получим.

Окончательно, разбиение на классы имеет вид: 1, 3, 5; 6; 2, 4. Таблица переходов минимального автомата будет иметь следующий вид:

     
  1,0 3,1
  3,0 1,1
  1,1 2,0

 


Состоянию 1 минимального автомата соответствует класс 1, 3, 5, состоянию 2 – класс 6, состоянию 3 – класс 2, 4.

 







Дата добавления: 2015-09-18; просмотров: 986. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия