Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОСНОВНЫЕ ПОНЯТИЯ. ПРЯМОУГОЛЬНАЯ СИСТЕМА КООРДИНАТ В ПРОСТРАНСТВЕ





 

1. Векторы в пространстве. В пространстве, как и на плоскости, вектором называется направленный отрезок. Векторы, расположенные на прямых, параллельных одной и той же плоскости, или лежащие в этой плоскости, называются компланарными.

Три вектора, среди которых имеется хотя бы один нулевой вектор, считаются компланарными.

Любой вектор пространства можно разложить по трем заданным некомпланарным векторам :

 

2. Прямоугольная система координат в пространстве. Пусть в прост­ранстве задана тройка попарно перпендикулярных единичных векторов , отложенных от некоторого начала — точки О. Такую тройку векторов называют прямоугольным базисом в пространстве. Совокупность начала О и прямоугольного базиса называют прямоугольной системой координат в пространстве.

Разложение вектора в базисе имеет вид

 

 

Если началом вектора является точка концом — точка , то вектор имеет координаты, равные разностям соответствующих координат точек B и A:

и записывается в виде

 

3. Правила действий над векторами, заданными своими координатами.

Если в базисе заданы векторы и , то: ;

координаты разности двух векторов равны:

;

координаты произведения вектора на число:

 

4. Условие коллинеарности двух векторов. Условие коллинеарности двух векторов и имеет вид

Если , то векторы имеют одинаковое направление; если т<0, то направления векторов противоположны.

 

5. Длина вектора. Длина вектора (расстояние между двумя точками) вычисляется по формуле

Длина радиус-вектора вычисляется по формуле

6. Деление отрезка в данном отношении. Если отрезок АВ разделен точкой С в отношении , то координаты точки С находятся по формулам

При получаются формулы для нахождения координат середины отрезка:

 

7. Направляющие косинусы вектора. Углы, образуемые радиус-вектором с координатными осями Ox, Оу, Oz, вычисляются по формулам

 

Косинусы углов, вычисляемые по этим формулам, называются направ­ляющими косинусами вектора .

Для направляющих косинусов вектора имеет место соотношение

.

 

 







Дата добавления: 2015-09-18; просмотров: 492. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия