Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1. Исследовать функцию на непрерывность.





Исследовать функцию на непрерывность.

 

Решение.

Данная функция не определена в точках x = −1 и x = 1.

Следовательно, функция имеет разрывы в точках x = ±1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках.

       
   
 
 

 

 


Поскольку левосторонний предел при x = −1 равен бесконечности, то данная точка является точкой разрыва второго рода.

 

 

       
 
 
   

 

 


Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода.

 

Пример 2

Найти точки разрыва функции

 
 

 

 


Вычислим односторонние пределы при x = 0.

       
 
 
   

 

 


Первый замечательный предел.

 

 

Примеры.

 

 

Второй замечательный предел.

 

 

Примеры.

 

 

 

 
 


Функция α (x) называется бесконечно малой при x®a, если

 

Предположим, что α (x) и β (x) - бесконечно малые функции при x®a.

 
 


Если

 

то говорят, что функция α (x) является бесконечно малой высшего порядка по сравнению с функцией β (x);

 
 


Если, то говорят, что функции α (x) и β (x)

 

являются бесконечно малыми одинакового порядка малости;

 
 

 


Если,то говорят, что функция α (x) является бесконечно малой порядка n относительно функции β (x);

 
 


Если,то говорят, что бесконечно малые функции α (x) и β (x) эквивалентны при x®a

 

 

Таблица эквивалентных функций

 

 
 


 
 
 
 
   

 

Доказать, что функции и при являются бесконечно малыми одного порядка малости.

 

Решение. данные функции – бесконечно малые одного порядка малости.

 

 

 

 







Дата добавления: 2015-09-18; просмотров: 791. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия