Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.





 

Уравнение вида y''+ρy'+qy=f(x),

где ρ и q – вещественные числа,

f(x) – непрерывная функция,

называется линейным дифференциальным уравнением с постоянными коэффициентами.

Рассмотрим линейное уравнение второго порядка вида:

y''+ρy'+qy=0, (1)

у которого правая часть f(x) равна нулю.

Такое уравнение называется однородным.

 

Уравнение к2+ρк+q=0 (2)

называется характеристическим уравнением уравнения (1).

Характеристическое уравнение (2) является квадратным уравнением, имеющим два корня. Обозначим их через к1 и к2.

Общее решение уравнения (1) может быть записано в зависимости от величины дискриминанта

D=ρ2–4q уравнения (2) следующим образом:

1. При D>0 корни характеристического уравнения вещественные и различные (к1≠к2), и общее решение имеет вид

 

2. При D=0 корни характеристического уравнения вещественные и равные (к12=к), и общее решение имеет вид:

 

  1. Если D<0, то корни характеристического уравнения комплексные:

 


И общее решение


Пример

Найти общее уравнение y''–y'–2y=0.

Решение:

Характеристическое уравнение имеет вид


Пример

Найти общее решение уравнения

y''–2y'+y=0.

Решение:

Характеристическое уравнение имеет вид


Пример

Найти общее решение уравнения

y''–4y'+13y=0.

Решение:

Характеристическое уравнение имеет вид


Задания к экзаменам







Дата добавления: 2015-09-18; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия