Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднородные уравнения второго порядка





y''+ρx+qy=f(x),

где f(x) – непрерывная функция, отличная от нуля.

Общее решение такого уравнения представляет собой сумму частного решения и общего решения y0

 

Рассмотрим различные виды правых частей уравнения (3).

1. Характеристическое уравнение имеет два различных действительных корня, отличных от нуля Пример. Рассмотрим неоднородное уравнение Для соответствующего однородного уравнения составим характеристическое уравнение
Правая часть В каком виде нужно искать частное решение неоднородного уравнения
1. )
2.
3.
4.
Примечание. Обратите внимание, когда в правой части находится неполный многочлен, то частное решение подбирается без пропусков степеней, пример: . Это многочлен первой степени, и в нем отсутствует константа. Однако при подборе частного решения константу пропускать нельзя, т.е. частное речение нужно искать в виде:
5. Коэффициент в показателе экспоненты: не совпадает с корнем характеристического уравнения Поэтому частное решение ищем в виде:
6. Коэффициент в показателе экспоненты: не совпадает с корнем характеристического уравнения . Поэтому частное решение ищем в виде:
7. Коэффициент в показателе экспоненты: совпадает с корнем характеристического уравнения Поэтому частное решение нужно домножить на х, т.е. искать в виде: , получим
8. Коэффициент в показателе экспоненты: совпадает с корнем характеристического уравнения . Поэтому частное решение домножаем на х, т.е. ищем в виде
Примечание. В случае неполных многочленов степени не теряются, например, если (в многочлене отсутствует и константа), то частное решение следует искать в виде: . Если (в многочлене отсутствует х в первой степени), то частное решение ищем в виде:
9.
10.
11.
Примечание. В подборе частного решения всегда должен присутствовать и синус и косинус (даже, если в правую часть входит только синус или только косинус)
   
         

ПРИМЕР 1.

Решить дифференциальное уравнение:

Решение записывается в виде:

1) Найдем общее решение: , составим характеристическое уравнение:

,тогда общее решение находится по формуле:

2) Найдем частное решение: , тогда частное решение находится по формуле (см. таблицу)

Подставим в исходное уравнение

Тогда решение запишется в виде:







Дата добавления: 2015-09-18; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия