Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные теоремы дифференциального исчисления





 

Теорема Ролля. Пусть функция у= f(х) удовлетворяет следующим условиям:

1) непрерывная на отрезке ;

2) дифференцируема в интервале ;

3) на концах отрезка принимает равные значения, то есть .

Тогда в середине отрезка существует хотя бы одна такая точка , в которой производная функции равна нулю: .

С геометрической точки зрения это означает, что если функция у= f(х) удовлетворяет условиям теоремы Ролля, то в середине отрезка обнаружится хотя бы одна точка, в которой касательная к графику функции будет параллельна оси абсцисс. На рис. 5.6 таких точек две: и .

Если , это теорема Ролля утверждает, что между двумя последовательными нулями дифференцируема функции есть хотя бы один нуль производной.

Все требования теоремы Ролля являются существенными и при невыполнении хотя бы одной из них вывод теоремы может быть неверным, что легко увидеть с помощью геометрической иллюстрации.

Рис. 5.7

На рис. 5.7, а – нарушено условие непрерывности на отрезке ;

на рис. 5.7, бы - нарушено условие дифференцируемости на интервале ;

на рис. 5.7, в - нарушено условие .

В результате ни в одном случае не существует такой точки , в которой .

Теорема Ролля есть частным случаем теоремы Лагранжа.

ТеоремаЛагранжа (о конечном приращении функции). Пусть функция у= f(х) удовлетворяет следующим условиям:

1) непрерывна на отрезке ;

2) дифференцируема на интервале .

Тогда в середине отрезка существует хотя бы одна такая точка , в которой производная равна частному от деления приращения функции на приращение аргумента на этом отрезке, то есть

(5.25)

Введем новую функцию следующим образом:

Функция удовлетворяет условиям теоремы Ролля: она непрерывна на отрезке , дифференцируема на интервале и принимает на его концах равные значения:

Значит, существует точка , такая, что , или , ведь откуда .

Формула (5.25) может быть переписана в виде . (5.26)

Выясним содержание теоремы Лагранжа. Приращение - это изменение функции на ; - это средняя скорость изменения функции на этом отрезке; значения производной в точке - это мгновенная скорость изменения функции. Таким образом, теорема утверждает: существует хотя бы одна точка в середине отрезка такая, что скорость изменения функции в ней равна средней скорости изменения функции на этом отрезке.

Геометрическое содержание вытекает из рис. 5.8.

 
 

 

Если передвигать прямую АВ параллельно начальному положению, то обнаружится хотя бы одна точка , в которой касательная к графику и хорда АВ, проведенная через концы дуги АВ, параллельны. (Так как угловой коэффициент секущей АВ ,

а касательной ).

Следствие. Если производная функции равна нулю на некотором промежутке Х,это функция тождественна постоянной на этом промежутке.

Рассмотренные теоремы используются для доказательства многих теоретических положений, результаты которых уже непосредственно используются для решения практических задач.

Следующая теорема имеет именно такой характер, она дает практическое правило для раскрытия неопределенностей вида или . Сформулируем ее.

Теорема 5.8 (правило Лопиталя). Пусть и - непрерывны и имеют производные во всех точках из окрестности точки , а в точке равны нулю или бесконечности. Тогда предел отношения функций равен пределу отношения их производных, если последняя существует, то есть

. (5.27)

Если отношение снова является неопределенностью вида или и производные и удовлетворяют условиям правила Лопиталя, то для вычисления предела можно применить правило Лопиталя вторично и так далее.

Пример 5.1. Вычислить предел

Решение.

Имеем неопределенность типа . По правилу Лопиталя

Пример 5.2. Вычислить

Решение.

Имеем неопределенность типа . Используя правило Лопиталя раз, получим

 

5. Применение производной к исследованию функции и построения ее графика







Дата добавления: 2015-09-18; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия