Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые последовательности





Определение. Числовой последовательностью является множество значений функции

у = f (х), определенной на множестве натуральных чисел.

- запись и обозначение последовательностей, - общий член последовательности.

Последовательность {хn} называется ограниченной, если существует такое число М > О, что для любого nÎN выполняется неравенство |хn| ≤ М

В противном случае последовательность называется неограниченной.

Легко видеть, что последовательности уn, и un, ограничены, а vn и zn неограничены.

Последовательность {хn} называется возрастающей (неубывающей), если для любого n выполняется неравенство an+1 > аn (an+1 ≥ аn). Аналогично определяется убывающая (невозрастающая) последовательность.

Все эти последовательности называются монотонными последовательностями. Последовательности уn, un и vn, монотонные, а zn - не монотонная.

Если все элементы последовательности {хn} равны одному и тому же числу с, то ее называют постоянной.

Сходящейся называют последовательность, которая имеет предел.

Пределом последовательности u1,u2,…un,… называют число а, если для любого положительного ε существует такое натуральное число Nε, зависимое от ε;, такое что все члены последовательности с номерами n> Nε, удовлетворяют неравенству | un - а |< ε. Записывают Геометрический смысл предел числовой последовательности: число а является пределом последовательности , если можно указать такой номер N, что все члены последовательности с номерами большими N, находятся в ε - окрестности точки а ε; - любое положительное число.






Дата добавления: 2015-09-18; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия