Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первісна та невизначений інтеграл





Означення 1. Функція називається первісною для даної функції на проміжку , якщо для будь-яких .

Теорема 1. Якщо і – дві первісні для функції на проміжку , то їх різниця дорівнює сталому числу.

Доведення.

Нехай існує на проміжку , та і її первісні. За означенням 1 маємо та .

За наслідком з теореми Лагранжа, маємо , де , тобто, . Теорему доведено.

Наслідок. Якщо первісна для деякої функції , то будь-яка інша первісна для має вигляд .

Означення 2. Невизначеним інтегралом від функції називається сукупність всіх первісних для функції і позначається символом , де – підінтегральна функція, – підінтегральний вираз, – знак інтеграла.

Інтегруванням називається операція знаходження первісної для даної функції . Крива називається інтегральною кривою.

Властивості невизначеного інтеграла

1.

2.

3.

4.

5. , де

6.

Знаки i слідуючи один за одним в будь-якій послідовності взаємознищуються.

 

Доведемо 5-ту властивість:

Нехай – первісна .

За означенням 2 маємо: .

Тоді є первісною для функції . Дійсно, за означенням 1:

.

 

Таблиця невизначених інтегралів

Нехай – незалежна змінна, функція неперервна на даному інтервалі і – її первісна.

(6.1)

Нехай , де неперервна і диференційовна, а неперервна. Розглянемо . (6.2)

В даному випадку складена функція є первісною для підінтегральної функції (6.2). Тоді знайдемо

.

Це означає , (6.3)

де .

Тобто, мають місце (6.1) і (6.3).

Зауваження. Деякі перетворення диференціалів :


1. , де .

2. .

3.

4.

5.

6.



 


Таблиця інтегралів

1. 10.

2. 11.

3. 12.

4. 13.

5. 14.

6. 15.

7. 16.

8. 17.

9. 18.

 







Дата добавления: 2015-09-18; просмотров: 544. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия