Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первісна та невизначений інтеграл





Означення 1. Функція називається первісною для даної функції на проміжку , якщо для будь-яких .

Теорема 1. Якщо і – дві первісні для функції на проміжку , то їх різниця дорівнює сталому числу.

Доведення.

Нехай існує на проміжку , та і її первісні. За означенням 1 маємо та .

За наслідком з теореми Лагранжа, маємо , де , тобто, . Теорему доведено.

Наслідок. Якщо первісна для деякої функції , то будь-яка інша первісна для має вигляд .

Означення 2. Невизначеним інтегралом від функції називається сукупність всіх первісних для функції і позначається символом , де – підінтегральна функція, – підінтегральний вираз, – знак інтеграла.

Інтегруванням називається операція знаходження первісної для даної функції . Крива називається інтегральною кривою.

Властивості невизначеного інтеграла

1.

2.

3.

4.

5. , де

6.

Знаки i слідуючи один за одним в будь-якій послідовності взаємознищуються.

 

Доведемо 5-ту властивість:

Нехай – первісна .

За означенням 2 маємо: .

Тоді є первісною для функції . Дійсно, за означенням 1:

.

 

Таблиця невизначених інтегралів

Нехай – незалежна змінна, функція неперервна на даному інтервалі і – її первісна.

(6.1)

Нехай , де неперервна і диференційовна, а неперервна. Розглянемо . (6.2)

В даному випадку складена функція є первісною для підінтегральної функції (6.2). Тоді знайдемо

.

Це означає , (6.3)

де .

Тобто, мають місце (6.1) і (6.3).

Зауваження. Деякі перетворення диференціалів :


1. , де .

2. .

3.

4.

5.

6.



 


Таблиця інтегралів

1. 10.

2. 11.

3. 12.

4. 13.

5. 14.

6. 15.

7. 16.

8. 17.

9. 18.

 







Дата добавления: 2015-09-18; просмотров: 544. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия