Адиабатический процесс
Уравнения изопроцессов, при которых один из основных параметров состояния системы не изменяется, читателю знакомы из школьного курса физики: изохорический (V); изобарический (P); изотермический (Т). Эти уравнения добыты человечеством путём экспериментальных исследований. Вместе с тем уравнение адиабаты, связывающее параметры идеального газа при адиабатическом процессе, получить таким путём исследований не представляется возможным, если не принимать во внимание – процесс идёт без теплообмена с окружающей средой. Это возможно, если обеспечена идеальная теплоизоляция и быстрое проведение процесса, чтобы тепло не успело перейти из системы в среду или обратно. Предпримем усилия для строгого обоснования уравнения адиабаты. Адиабатическим называют процесс, при котором теплообмен термодинамической системы с окружающей средой отсутствует на протяжении всего процесса . Для получения уравнения адиабаты воспользуемся первым началом термодинамики в дифференциальной форме: Из первого начала следует, при адиабатических процессах внешняя работа совершается за счёт внутренней энергии системы. Действительно, отсюда . На знаковом (словесном) языке аналитическая запись первого начала термодинамики применительно к адиабатическому процессу читается следующим образом: «Если термодинамическая система совершает работу над внешними телами, то её внутренняя энергия уменьшается на эквивалентную работе величину, и наоборот, если внешние тела совершают работу над системой, то её внутренняя энергия увеличивается на величину работы внешних сил». Переходя к нахождению уравнения, связывающего параметры идеального газа при адиабатическом процессе, учтём, что элементарная работа Поскольку в адиабатическом процессе все три параметра состояния изменяются, (рис. 7.4. нижняя кривая), функциональную зависимость выразим из уравнения состояния для идеального газа . Элементарная работа при адиабатическом расширении примет вид: . Уменьшение внутренней энергии термодинамической системы при адиабатическом расширении представим через количество и сортность квазичастиц, их возможное число степеней свободы и через изменение температуры dT. Таким образом, ; здесь k – постоянная Больцмана, равная R / N А, . Полученные выражения для элементарной работы и энергии подставим в первое начало термодинамики, преобразованное применительно к адиабатическому процессу. Результатом является уравнение вида: = – . Преобразуем его следующим образом: сократим на постоянный множитель , учтём, что теплоёмкость одного моля газа при постоянном объёме и разделим правую и левую части на ; в результате уравнение принимает вид: Наконец, разделив переменные и приняв во внимание выражение (9), откуда следует , уравнение запишется: (14) Внимательный читатель, приняв во внимание формулу (9) и проведя преобразования, убедился, что постоянная . Действительно, . Интегрируя уравнение (14) в пределах от до и, соответственно, от Т 1 до Т 2, , приходим к уравнению, . Учтём, разность логарифмов равна логарифму частного, в результате получаем уравнение вида: . Если учесть свойства логарифмов, в частности, множитель перед логарифмом является показателем степени для выражения под логарифмом, уравнение запишется: (15) Логарифмы в уравнении (15) равны, если равны выражения под логарифмами, отсюда немедленно следует: (16) окончательно уравнение адиабатического процесса принимает вид: (17) Пытливый читатель, воспользовавшись уравнением состояния, может выразить из него температуру и, подставив в уравнение (17), получить уравнение адиабатического процесса, связывающего давление и объём: (18) Формулы (17) и (18), связывающие параметры идеального газа при равновесном адиабатическом процессе, называются уравнениями Пуассона. Отношение С р/ С v = g называется показателем адиабатического процесса; учитывая «чувствительность» молярных теплоёмкостей идеального газа к числу степеней свободы частиц, показатель адиабаты может быть представлен в виде: (19) Для практического осуществления процессов, близких к адиабатическим, возможны два пути: 1) очень быстрое изменение объёма газа; и 2) изменение объёма очень большой массы газа. В обоих случаях не успевает произойти значительного теплообмена между системой (газом) и окружающей средой, что равносильно наличию хорошей теплоизоляции между ними.
|