Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА №2.





Действительные числа. Метод математической индукции. Абсолютная величина.

Опр.1. Числа 1, 2=1+1, 3=2+1,…n-1,n=(n-1)+1… называется натуральными. Таким образом, множество натуральных чисел может быть определено как наименьшее – числовое множество, содержащее число 1 и вместе с каждым числом n содержащее число n+1.

Метод математической индукции: если предложение, зависящее от натурального числа n:

а) верно для некоторого начального значения n=n , например, n=1;

б) из допущения, что оно верно для n=k, где k n произвольное натуральное число, вытекает, что предложение верно и для n=k+1, то предложение верно при любом натуральном n N.

Пример 1. Доказать, что верно равенство:

1 +2 +…+n = (1).

Решение: 1. ] n=1, тогда (1 =1) ( = =1), 1=1.

Действительно, равенство верно при n=1.

2. Допустим, что равенство (1) верно при n=k.

3. Докажем верность равенства (1)при n=k+1:

1 +2 +3 +…+k +(k+1) =(1 +2 +…+k )+(k+1) .

Т.к. равенство верно при n=k, то (1 +2 +…+k )+(k+1) = +(k+1) =(k+1)[ +(k+1)]=(k+1) =(k+1) .

Разложим 2k +7k+6 на множители, для этого найдем его нули:

2k +7k+6 =0

D=49-48=1>0 k = ; k = =-2, k = = -

 

Значит, 2k +7k+6= 2(k+2)(k+ )=(k+2)(2k+3)

Таким образом, 1 +2 +3 +…+k +(k+1) = ,

Т.е. равенство (1) верно при n=k+1. Значит, это равенство верно при

n N

Опр.2. Множество R называется множеством действительных чисел, а его элементы x R - действительными числами, если выполняется следующий набор аксиом: (см. В. А. Зорич «Математический анализ» стр. 45)

I. Аксиомы сложения (?).

II. Аксиомы умножения (?).

III. Аксиомы связи сложения и умножения (?).

IV. Аксиомы порядка (?).

V. Аксиомы связи сложения и порядка (?).

VI. Аксиомы связи умножения и порядка (?).

VII. Аксиомы полноты (?).

Опр.3. Абсолютной величиной (модулем) числа x называется число |x|, определяемое условиями: |x|=

Свойства абсолютных величин:

1. , |x| 0

2. , |x|=|-x|

3. , x |x|, -x≤|x|

4. , |x+y|≤|x|+|y|

5. , | |x|-|y| |≤|x-y|.

6. , |xy|=|x| |y|.

Неравенство |x|≤ означает, что - .

Неравенство |x| означает, что (x .

Пример 2. Решить неравенства: а) |2x-1|<1,

б) |x -8x+12|>x -8x+12.

Решение: а) неравенство |2x-3|<1 равносильно неравенствам –

1<2х-3<1, откуда 2<2x<4 1<x<2.

Ответ: (1,2).

б) данное неравенство справедливо для тех значений х, при которых x -8x+12<0. Найдем нули квадратного трехчлена:

x -8x+12=0

(x +x =8) (x x =12) (x =2) (x =6)

Таким образом, x -8x+12=(х-2)(х-6). Решаем методом интервалов:

 

Ответ: (2,6).

Пример 3. Имеет ли решение уравнение: |x|=x+5

Решение: при х 0 имеем х=х+5, решений нет. При х<0 имеем –х+х+5=0 , х= . Это значение удовлетворяет исходному уравнению.

Ответ: х= .

 

 

ВАРИАНТЫ

1. Доказать равенство:

1) + + +…+ =

2)

3)

4)

5)

6)

7) =

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

 

2. Доказать, что для справедливо утверждение:

1) 6 +1 кратно 7 2) 7 -1 кратно12

3) 4 +15n-1 кратно 9 4) n -n является четным

5) 5 +1 кратно 6 6) 9 -8n-9 кратно 16

7) кратно 3 8) 3 +1 кратно 4

9) кратно 19 10) кратно 133

11) кратно 3 12) кратно 57

13) кратно 19 14) кратно 8

15) кратно 4 16) кратно 9

17) кратно 27 18) кратно 4

19) кратно 17 20) кратно 81

21) кратно 43 22) кратно 16

23) кратно 7 24) n3+5n кратно 6

25) кратно 4

 

3. Решить уравнение и неравенство:

1) |3x-2|=0,3; |3x-5|-|2x+3|>0

2) |2x+2,5|=|x-3,3|; 2x -5|x|+3 0

3) |2x+3|=0,1; |x -5x|>|x |-|5x|

4) |x+4|=|x-4|; x -2|x|-3>0

5) |x+7|=|x-2|+|x-3|; x -4|x|+3>0

6) x -2|x|-3=0; |x| |x-2|

7) |sinx|=sinx+1; |x-5|<|x-1|

8) |2x+1|=3; |x-1|<|x+1|

9) |x-2|+|x-4|=3; |4x+5|<3

10) ;

11) ; |x2-4|<3x

12) |x2-x-5|=1;

13) x2-|x|-2=0; |3x-2|>|2x+1|

14) 2(x-1)2+|x-1|-1=0;

15) x|x|+8x-7=0;

16) |x-2|x-6x+8=0; x2-4|x|<12

17) x2-2|x-1|=2; |x+1|+|x-1| 2

18) |x+3|=x2+x-6; 2|x-3|+|x+1| 3x+1

19) |x2+x-1|=2x-1; |3x-2|x<1

20) |x-1|+|x+2|-2x=1;

21) ; |x2+x-2|>

22) |5-3x|=2x+1; 3x+|2-x| 5

23) x2-7=|3x-7|; 3x>2-|3-x|

24) x|3x+5|=3x2+4x+3;

25) |3x-8|-|3x-2|=6;

 

 







Дата добавления: 2015-09-18; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия