Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА № 10.





Производные высших порядков, ряд Тейлора.

Если функция f:ХàR,xÎR,дифференцируема в "xÎX,то на множестве X возникает функция f ¢:XàR,значение которой в точке xÎX равно производной f ¢ (x).Если же функция f ¢:XàR имеет производную (f ¢)¢:XàR на множестве x,то (f ¢)¢(x) называется второй производной функции f(x) и обозначается f ²(x) или . Если f ²(x) имеет производную (f ²(x))¢,то эта производная называется третьей производной функции f(x) или производной третьего порядка функции f(x) и обозначаются одним из символов f ²¢(x),f(3)(x),

Производная n -го порядка является производной от производной

(n -1) порядка, т.е.

f(n)=(f(n-1))/ (x)

Производные, начиная со второй, называются производными высших порядков и обозначаются у/////(4),…у(n),

Производные n-го порядка некоторых элементарных функций:

1. ( x)(n)= xlnnx ()

2. (sinx)(n)=

3. (xm)(n)=m(m-1)…(m-n+1)xm-n

4. (ex)(n)=ex

5. (cosx)(n)=

6. (lnx)(n)=

Если функции u=j(x) и v=y(x) имеют производные n-го порядка (n- кратно дифференцируемы),

(1)

Пример 1: Вычислить n -ю производную (n ³2) функции y=x2cosx.

Решение: полагая u=cosx и v=x2, найдем

u(n)=cos(x+nп/2), v'=2x, v''=2,v''''=v(4)=…=0.

Подставляя в формулу (1), получаем

y(n)=c0ncos(x+nп/2)x2+c1ncos(x+(n-1)п/2)2x+c2ncos(x+(n-2)п/2)2

Формула (1) называется формулой Лейбница.

Опр. Функция у называется заданной параметрически, если зависимость между у и х задана системой уравнений

,tÎT

 
 

Производные этой функции могут быть найдены по формулам:

 

Пример 2. Найти производные от функции y=y(x), заданной параметрически если x=acost, y=asint

Решение:

Формула Тейлора. Пусть функция f(x) имеет в точке а и некоторой ее окрестности производные порядка n+1. Пусть х-любое значение аргумента из указанной окрестности, х= а. Тогда между точками а и х найдется точка x такая, что справедлива следующая формула:

Частный, простейший вид формулы Тейлора при а =0 принято называть формулой Маклорена:

Пример 3. Разложить в ряд Тейлора функции у=1/х при а =-2.

Решение: вычисляем значения данной функции и ее производных при х= а =-2

Подставляя эти значения в формулу Тейлора для произвольной функции, получим

ВАРИАНТЫ.

1. Найти

 

2. Доказать, что функция у удовлетворяет соотношению:

3. Используя формулу Лейбница, найти:

4. Используя формулу Тейлора, разложить функцию y= f (x) по степеням (х-х );

 







Дата добавления: 2015-09-18; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия