Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА №6





Вычисление предела функции.

При вычислении предела функции необходимо знать следующие

теоремы:

Кроме того, надо пользоваться тем, что для всех основных элементарных функций в любой точке их области определения справедливо равенство:

(в силу непрерывности, Л.р. №7)

Этими простейшими пределами можно пользоваться как формулами:

Более сложные случаи нахождения предела функции: ,[1¥] рассматриваются далее в отдельности.

Пример 1. Найти предел:

Решение:

Разлагаем знаменатель на множители:

Здесь нет сокращения на нуль, что никогда недопустимо. Согласно определению предела функции аргумент х стремиться к своему предельному значению 2, никогда с ним не совпадая.

Пример 2. Найти предел:

Решение:

Пример 3. Найти предел:

Решение:

(Применяем тригонометрическую формулу так, чтобы использовать первый замечательный предел).

Пример 4. Найти предел:

Решение:

Деля числитель и знаменатель на наивысшую степень х (на х2), находим

Случай, когда при х® а или х®¥ функция f (x) представляет произведение бесконечно малой величины на бесконечно большую , приводится путем преобразования функции к одному из двух рассмотренных случаев, т.е. к или к .

Случай, когда при х® а или х®¥ функция f (x) представляет разность двух положительных бесконечно больших величин , можно привести к случаю или путем преобразования функции к дроби.

Пример 5. Найти следующий предел:

Решение:

ВАРИАНТЫ.

Найти следующие пределы:

В-1

В-2

В-3

В-4

В-5

В-6

В-7

В-8

В-9

В-10

 

В-11

В-12

В-13

В-14

В-15

В-16

 

В-17

В-18

В-19

В-20

В-21

В-22

 

В-23

В-24

В-25







Дата добавления: 2015-09-18; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия