Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение: возьмем





Тогда соответствующие последовательности значений функции таковы:

Следовательно,

, т.е. не существует

Замечание 2: Пример 2 показывает, что вывод о наличии предела функции нельзя делать, исходя из последовательности {xn} частного вида (например, исходя из xn'' =1+ ), а нужно рассматривать произвольную последовательность {xn }, имеющую заданный

предел а.

Пример 3: Пользуясь " " определением предела, доказать, что


Решение: Надо доказать, что для "e>0 существует такое de >0, что из неравенства 0 < |x-1| < de следует, что | f (x)-1| < e, f (x)=4x-3. Зададим

e > 0 и рассмотрим выражение: | f (x)-1|=|4x-3-1|= 4|x-1|.

Если взять de ≤ e/4, то для всех х, удовлетворяющих неравенству |x-1| < de, будем иметь | f (x)-1| = 4|x-1|<4de ≤ 4e/4=e.

Следовательно,

Пример 4: f (x)=1/(x-1) доказать, что

Решение: По определению , если для " М>0 можно подобрать dМ>0, что для всех х¹ а, удовлетворяющих неравенству

0<|x- a |<d, будет выполняться условие >M. В нашем случае по заданному M>0 будем подбирать dМ из условия

| 1/|x-1|>M Ú |x-1|<1/M.

Следовательно, положив dM=1/М, получим, что для всех х, удовлетворяющих неравенству 0<|x-1|<dM, выполняется неравенство M, значит,

ВАРИАНТЫ.

1. Доказать, что предел функции не существует:

 

2. Доказать с помощью "e-d" определения существования следующих пределов и по заданным e, подобрать de: e1=0,5;e2=1;e3=1/100.

 

3. Доказать, что







Дата добавления: 2015-09-18; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия