Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА № 8.





Производная.

Опр.1. Производной функции по аргументу называется предел отношения приращения функции в точке к приращению аргумента при условии, что это последнее стремиться к нулю. Производная функции обозначается .

Таким образом, по определению

Операция отыскания производной данной функции называется дифференцированием этой функции.

Геометрически число представляет собой угловой коэффициент касательной к графику функции в точке .

Пример 1. Исходя из определения производной, непосредственно найти производную функции у=х2.

Решение:

Придадим х приращение Dх и найдем приращение функции:

Dу=у(х+Dх)-у(х)=(х+Dх)222+2хDх+(Dх)22=2хDх+(Dх)2

Основные правила нахождения производной.

Если с - постоянная величина и функции u=u(x), v=v(x), w=w(x)

имеют производные, то

1) (с)/=0

2) (cu)/=cu/

3) (u+v-w)/=u/+v/+w/

4) (uv)/=u/v+uv/

5)

6)

7) если функции и имеют производные, то yx/ =yu/ ux/.

Пример 2. Вычислить производную функции: y=(2x2 –5x+1)ex

Решение:

y/ =(2x2 –5x+1)/ ex +(2x2 –5x+1)(ex)/ =(по правилу 4)=[(2x2)/ –(5x)/ +1/]ex +(2x2 –5x+1)ex =

=(по правилу 3)=(4x-5)ex +(2x2 –5x+1)ex.

Если х- независимая переменная, то

Основные формулы.

Пример 3. Вычислить производную функции:

Решение:

Воспользуемся сначала правилом 5), а затем правилами 3) и 4) и формулами 2) и 3).

ВАРИАНТЫ.

1. Исходя из определения производной, непосредственно найти производные функций:

2. Пользуясь основными правилами нахождения производных и таблицей производных, вычислить производные функций:

ЛАБОРАТОРНАЯ РАБОТА № 9.

Дифференциал и дифференцируемость функции.

Опр.1. Функция y= f (x): v(x0)®R называется дифференцируемой в точке х0, если ее приращение в этой точке Dy= f (x0+Dx)- f (x0).

Dx=x-x0, представимо в виде:

Dy=A Dx+a(Dx)Dx, (1)

где А- некоторая const, не зависящая от Dx, а a(Dх)®0 при Dх®0.

Опр.2. Главная линейная часть приращения функции относительно Dх называется дифференциалом функции f в точке х0 и обозначается d f (x0) или, короче, dy=ADx. Таким образом,

Dy=dy+0(Dx) при Dх®0 (2).

Т.к.

Для большей симметрии записи дифференциала приращение Dх обозначают dх и и называют его дифференциалом независимого переменного. Таким образом, dy=Adx.

Пример 1. Доказать, что функция y=x2-x+3 диффенцируема

на R.

Решение: возьмем "хÎR, дадим ей приращение Dх, тогда

Dу= f (x+Dx)- f (x)=(x+Dx)2-(x+Dx)+3-(x2-x+3)=x2+2xDx+(Dx)2-x-Dx+3-x2+x-3= (2x-1)Dx+(Dx)2

где (Dх)2=0(Dх), т.к. =Dх®0 при Dх®0.

Т.о. Dу=АDх+0(Dх), где А=2х-1, т.е. Dу представимо в виде (1) в "хÎR.

Теорема: Для того, чтобы функция y= f (x):U(x0)®R была дифференцируемой в точке х0Û она имела производную в х0, при этом dy= f /(x0)dx.

Пример 2. Доказать, что функция не дифференцируема в точке =0.

Решение: Имеем

т.е. в точке =0 не дифференцируема.

Пример 3. Пользуясь понятием дифференциала, найти приближенное значение

Решение: рассмотрим функцию ,тогда

- есть значение данной функции при х=0,15

 

Пусть х0=0, х=0,15. Тогда у(0)=1.

Из (2) видно, что Dy=dy, a dy=f /Dx,т.е.

Dy»f /(x)Dx, Dy=f(x+Dx)-f(x).

Отсюда f(x+Dx)»f(x)+f /(x)Dx. В нашем. случае x=0,

x+Dx=0,15; f(0,15)»f(0)+f /(0) 0,15.

Определим

 
 

ВАРИАНТЫ.

1. Доказать, что функция f (x) не дифференцируема в точке х.


2. Найти дифференциалы функций:

3. Найти приближенное значение функции:

В-1 B-2

y=x5-2x4+3x3-4x2+6, x=1,001 y=(x-3)2(x-2)3(x-4), x=4,001

B-3 B-4

y=ctgx, x=45010/ y=xln(x-2), x=3,001

B-5 B-6

(33)1/5 lg 10,21

B-7 B-8

arctg 1,05 cos 310

В-9 B-10

cos630 tg460

B-11 B-12

sin320 ctg430

B-13 B-14

sin270 cos590

B-15 B-16

tg430 sin290

B-17 B-18

cos620 tg430

B-19 B-20

sin330 cos570

B-21 B-22

ctg470

B-23 B-24

B-25

 

 







Дата добавления: 2015-09-18; просмотров: 703. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия