Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциалдық теңдеулер. Бірінші ретті дифференциалдық теңдеулер





 

Анықтама. Тәуелсіз x айнымалысын, белгісіз y=f(x) функциясын және оның y’, y”, …, y(n) туындыларын байланыстыратын теңдеуді дифференциалдық теңдеу деп айтады.

Символды түрде дифференциалдық теңдеуді былай

немесе былай

жазады.

Егер белгісіз функциясы тек бір ғана аргументтен тәуелді болса дифференциалдық теңдеуді жай дифференциалдық теңдеу деп атайды. Біз тек қана жай дифференциалдық теңдеуді қарастырамыз.

Анықтама. Теңдеудегі белгісіз функцияның туындыларының ең жоғарғы ретін дифференциалдық теңдеудің реті дейді.

Анықтама. Егер y=ϕ(x) функциясын теңдеуге апарып қойғанда ол теңдеуді қанағаттандырса, яғни теңдеуді тепе-теңдікке айналдырса, бұл функцияны дифференциалдық теңдеудің шешімі немесе интегралы деп айтады.

Бірінші ретті жай дифференциалдық теңдеудің жалпы түрі мынадай болады:

F(x,y,y’)=0.

Кейде бұл теңдеуді белгісіз функцияның туындысы арқылы шешуге болады:

y’=f(x,y) (1)

Бұл жағдайда біз дифференциалдық теңдеу туындысы арқылы шешіліп тұр деп айтамыз. Осындай теңдеулер үшін шешімі бар және жалғыз болуы туралы теореманы келтірелік.

Теорема. Егер (1) теңдеудің оң жағындағы f(x,y) функциясы және оның y бойынша дербес f’y туындысы (x0,y0) нүктесін қамтитын 0xy жазықтығының D обылысында үзіліссіз болса, онда (1) дифференциалдық теңдеудің x=x0 y=y0 шартын қанағаттандыратын жалғыз шешімі болады.

Егер геометриялық тұрғыдан қарайтын болсақ, графигі (x0,y0) нүктесі арқылы өтетін (1) теңдеуді қанағаттандыратын жалғыз ғана функция болады.

Теоремадан (1) теңдеудің әртүрлі шексіз көп шешімі болатыны шығады. Мысалы теорема бойынша графиктері D обылысында жататын (x0,y1); (x0,y2);... нүктелері арқылы өтетін шешімдер болады, олар әртүрлі болады.

Дифференциалдық теңдеу шешімі x=x0 болғанда y=y0 болуы керек деген шартты бастапқы шарт деп айтады. Бұл шартты кейде былай жазады

Анықтама. Егер бір кез-келген тұрақты санынан тәуелді болатын

y=ϕ(x,C), (2)

функциясы төмендегі шарттарды қанағаттандырса, бұл функцияны дифференциалдық теңдеудің жалпы шешімі деп айтады.

1. функциясы C санының кез-келген мәнінде дифференциалдық теңдеудің шешімі болады, яғни теңдеуді қанағаттандырады;

2. дифференциалдық теңдеудің шешімі бар және жалғыз болуы туралы теореманың шартын қанағаттандыратын кез-келген бастапқы шарт үшін C=C0 мәні табылып y=ϕ(x,C0) функциясы осы бастапқы шартты қанағаттандырады.

Теңдеудің шешімін іздеген кезде кей жағдайда шешім қанағаттандыратын мынандай теңдеу аламыз

Φ(x,y,C)=0 (3)

Бұл теңдеу дифференциалдық теңдеудің шешімін айқын емес түрде анықтап тұр. Мұндай жағдайда біз (3) өрнекті дифференциалдық теңдеудің жалпы интегралы деп айтамыз.

Анықтама. Жалпы шешімдегі тұрақты сан бір мән қабылдаған кезде шыққан шешімді дифференциалдық теңдеудің дербес шешімі деп айтамыз, яғни C=C0 болса, онда y=ϕ(x,C0) дербес шешім болады.

Дифференциалдық теңдеуді шешуді кейде дифференциалдық теңдеуді интегралдау деп те айтады.

Сонымен дифференциалдық теңдеуді интегралдау дегеніміз:

1. егер бастапқы шарт берілмесе теңдеудің иә жалпы шешімін, иә жалпы интегралын табу;

2. егер бастапқы шарт берілсе, осы бастапқы шартты қанағаттандыратын дербес шешімін табу.

Дифференциалдық теңдеудің берілген бастапқы шартты қанағаттандыратын шешімін табу есебін Коши есебі деп атайды.

Дифференциалдық теңдеудің дербес шешімі жазықтықтағы декарттық координаталар системасында бір қисықтың теңдеуі болады. Бұл қисықты интегралдық қисық; деп атайлы. Дифференциалдық теңдеудің жалпы шешімі дифференциалдық теңдеудің барлық интегралдық қисықтарының жиынын береді.

 







Дата добавления: 2015-09-18; просмотров: 11741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия