Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциалдық теңдеулер. Бірінші ретті дифференциалдық теңдеулер





 

Анықтама. Тәуелсіз x айнымалысын, белгісіз y=f(x) функциясын және оның y’, y”, …, y(n) туындыларын байланыстыратын теңдеуді дифференциалдық теңдеу деп айтады.

Символды түрде дифференциалдық теңдеуді былай

немесе былай

жазады.

Егер белгісіз функциясы тек бір ғана аргументтен тәуелді болса дифференциалдық теңдеуді жай дифференциалдық теңдеу деп атайды. Біз тек қана жай дифференциалдық теңдеуді қарастырамыз.

Анықтама. Теңдеудегі белгісіз функцияның туындыларының ең жоғарғы ретін дифференциалдық теңдеудің реті дейді.

Анықтама. Егер y=ϕ(x) функциясын теңдеуге апарып қойғанда ол теңдеуді қанағаттандырса, яғни теңдеуді тепе-теңдікке айналдырса, бұл функцияны дифференциалдық теңдеудің шешімі немесе интегралы деп айтады.

Бірінші ретті жай дифференциалдық теңдеудің жалпы түрі мынадай болады:

F(x,y,y’)=0.

Кейде бұл теңдеуді белгісіз функцияның туындысы арқылы шешуге болады:

y’=f(x,y) (1)

Бұл жағдайда біз дифференциалдық теңдеу туындысы арқылы шешіліп тұр деп айтамыз. Осындай теңдеулер үшін шешімі бар және жалғыз болуы туралы теореманы келтірелік.

Теорема. Егер (1) теңдеудің оң жағындағы f(x,y) функциясы және оның y бойынша дербес f’y туындысы (x0,y0) нүктесін қамтитын 0xy жазықтығының D обылысында үзіліссіз болса, онда (1) дифференциалдық теңдеудің x=x0 y=y0 шартын қанағаттандыратын жалғыз шешімі болады.

Егер геометриялық тұрғыдан қарайтын болсақ, графигі (x0,y0) нүктесі арқылы өтетін (1) теңдеуді қанағаттандыратын жалғыз ғана функция болады.

Теоремадан (1) теңдеудің әртүрлі шексіз көп шешімі болатыны шығады. Мысалы теорема бойынша графиктері D обылысында жататын (x0,y1); (x0,y2);... нүктелері арқылы өтетін шешімдер болады, олар әртүрлі болады.

Дифференциалдық теңдеу шешімі x=x0 болғанда y=y0 болуы керек деген шартты бастапқы шарт деп айтады. Бұл шартты кейде былай жазады

Анықтама. Егер бір кез-келген тұрақты санынан тәуелді болатын

y=ϕ(x,C), (2)

функциясы төмендегі шарттарды қанағаттандырса, бұл функцияны дифференциалдық теңдеудің жалпы шешімі деп айтады.

1. функциясы C санының кез-келген мәнінде дифференциалдық теңдеудің шешімі болады, яғни теңдеуді қанағаттандырады;

2. дифференциалдық теңдеудің шешімі бар және жалғыз болуы туралы теореманың шартын қанағаттандыратын кез-келген бастапқы шарт үшін C=C0 мәні табылып y=ϕ(x,C0) функциясы осы бастапқы шартты қанағаттандырады.

Теңдеудің шешімін іздеген кезде кей жағдайда шешім қанағаттандыратын мынандай теңдеу аламыз

Φ(x,y,C)=0 (3)

Бұл теңдеу дифференциалдық теңдеудің шешімін айқын емес түрде анықтап тұр. Мұндай жағдайда біз (3) өрнекті дифференциалдық теңдеудің жалпы интегралы деп айтамыз.

Анықтама. Жалпы шешімдегі тұрақты сан бір мән қабылдаған кезде шыққан шешімді дифференциалдық теңдеудің дербес шешімі деп айтамыз, яғни C=C0 болса, онда y=ϕ(x,C0) дербес шешім болады.

Дифференциалдық теңдеуді шешуді кейде дифференциалдық теңдеуді интегралдау деп те айтады.

Сонымен дифференциалдық теңдеуді интегралдау дегеніміз:

1. егер бастапқы шарт берілмесе теңдеудің иә жалпы шешімін, иә жалпы интегралын табу;

2. егер бастапқы шарт берілсе, осы бастапқы шартты қанағаттандыратын дербес шешімін табу.

Дифференциалдық теңдеудің берілген бастапқы шартты қанағаттандыратын шешімін табу есебін Коши есебі деп атайды.

Дифференциалдық теңдеудің дербес шешімі жазықтықтағы декарттық координаталар системасында бір қисықтың теңдеуі болады. Бұл қисықты интегралдық қисық; деп атайлы. Дифференциалдық теңдеудің жалпы шешімі дифференциалдық теңдеудің барлық интегралдық қисықтарының жиынын береді.

 







Дата добавления: 2015-09-18; просмотров: 11741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия